메뉴 건너뛰기




Volumn 56, Issue 4, 2014, Pages 534-563

Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory

Author keywords

Bagged nearest neighbor; Nonparametric regression; Probability estimation; Random forest; Support vector machine

Indexed keywords

NEAREST NEIGHBOR SEARCH; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 84903648854     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201300068     Document Type: Article
Times cited : (69)

References (105)
  • 1
    • 0040752847 scopus 로고    scopus 로고
    • Statistical models and artificial neural networks
    • In: Bock, H. H. and Polasek, W., eds), Springer, Heidelberg
    • Arminger, G. and Enache, D. (1996). Statistical models and artificial neural networks. In: Bock, H. H. and Polasek, W., (eds), Data Analysis and Informations Systems. Springer, Heidelberg, pp. 243-260.
    • (1996) Data Analysis and Informations Systems , pp. 243-260
    • Arminger, G.1    Enache, D.2
  • 2
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods?
    • Austin, P. C., Lee, D. S., Steyerberg, E. W. and Tu, J. V. (2012). Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biometrical Journal 54, 657-673.
    • (2012) Biometrical Journal , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 6
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forests model
    • Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research 13, 1063-1095.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 7
    • 77949521444 scopus 로고    scopus 로고
    • On the rate of convergence of the bagged nearest neighbor estimate
    • Biau, G., Cérou, F. and Guyader, A. (2010). On the rate of convergence of the bagged nearest neighbor estimate. Journal of Machine Learning Research 11, 687-712.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 687-712
    • Biau, G.1    Cérou, F.2    Guyader, A.3
  • 8
    • 77956747417 scopus 로고    scopus 로고
    • On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
    • Biau, G. and Devroye, L. (2010). On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification. Journal of Multivariate Analysis 101, 2499-2518.
    • (2010) Journal of Multivariate Analysis , vol.101 , pp. 2499-2518
    • Biau, G.1    Devroye, L.2
  • 9
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau, G., Devroye, L. and Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research 9, 2039-2057.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2039-2057
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 10
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • Bickel, P., Ritov, Y. and Tsybakov, A. (2009). Simultaneous analysis of lasso and dantzig selector. Annals of Statistics 37, 1705-1732.
    • (2009) Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 33745182398 scopus 로고    scopus 로고
    • Consistency for a simple model of random forests
    • Technical report 670. Statistics department, University of California at Berkeley, CA., accessed July 09, 2013.
    • Breiman, L. (2004). Consistency for a simple model of random forests. Technical report 670. Statistics department, University of California at Berkeley, CA. http://www.stat.berkeley.edu/breiman/RandomForests/consistencyRFA.pdf, accessed July 09, 2013.
    • (2004)
    • Breiman, L.1
  • 16
    • 33746171809 scopus 로고    scopus 로고
    • Observations on bagging
    • Buja, A. and Stuetzle, W. (2006). Observations on bagging. Statistica Sinica 16, 323-352.
    • (2006) Statistica Sinica , vol.16 , pp. 323-352
    • Buja, A.1    Stuetzle, W.2
  • 18
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: statistical estimation when p is much larger than n
    • Candés, E. J. and Tao, T. (2007). The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics 35, 2313-2351.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candés, E.J.1    Tao, T.2
  • 19
    • 0033570279 scopus 로고    scopus 로고
    • Analysis of binary outcomes in longitudinal studies using weighted estimating equations and discrete-time survival methods: prevalence and incidence of smoking in an adolescent cohort
    • Carlin, J. B., Wolfe, R., Coffey, C. and Patton, G. C. (1999). Analysis of binary outcomes in longitudinal studies using weighted estimating equations and discrete-time survival methods: prevalence and incidence of smoking in an adolescent cohort. Statistics in Medicine 18, 2655-2679.
    • (1999) Statistics in Medicine , vol.18 , pp. 2655-2679
    • Carlin, J.B.1    Wolfe, R.2    Coffey, C.3    Patton, G.C.4
  • 20
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning 46, 131-159.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 21
    • 84861730860 scopus 로고    scopus 로고
    • Random forests for genomic data analysis
    • Chen, X. and Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics 99, 323-329.
    • (2012) Genomics , vol.99 , pp. 323-329
    • Chen, X.1    Ishwaran, H.2
  • 23
    • 0014380444 scopus 로고
    • Rates of convergence for nearest neighbor procedures
    • In: Kinariwala, B. K. and Kuo, F. F. (Eds), University of Hawaii Press, Honolulu, HI.
    • Cover, T. M. (1968). Rates of convergence for nearest neighbor procedures. In: Kinariwala, B. K. and Kuo, F. F. (Eds), Proceedings of the Hawaii International Conference on System Sciences, 413-415. University of Hawaii Press, Honolulu, HI.
    • (1968) Proceedings of the Hawaii International Conference on System Sciences , pp. 413-415
    • Cover, T.M.1
  • 24
    • 84886949840 scopus 로고    scopus 로고
    • A novel approach to cardiovascular health by optimizing risk management (anchor): behavioural modification in primary care effectively reduces global risk
    • Cox, J. L., Vallis, T. M., Pfammatter, A., Szpilfogel, C., Carr, B. and O'Neill, B. J. (2013). A novel approach to cardiovascular health by optimizing risk management (anchor): behavioural modification in primary care effectively reduces global risk. Canadian Journal of Cardiology 29, 1400-1407.
    • (2013) Canadian Journal of Cardiology , vol.29 , pp. 1400-1407
    • Cox, J.L.1    Vallis, T.M.2    Pfammatter, A.3    Szpilfogel, C.4    Carr, B.5    O'Neill, B.J.6
  • 26
    • 84861076398 scopus 로고    scopus 로고
    • Cardiovascular risk estimation in 2012: lessons learned and applicability to the HIV population
    • D'Agostino, R. B.. S. (2012). Cardiovascular risk estimation in 2012: lessons learned and applicability to the HIV population. Journal of Infectious Diseases 205 (Suppl 3), S362-S367.
    • (2012) Journal of Infectious Diseases , vol.205 , Issue.SUPPL 3
    • D'Agostino, R.B.1
  • 27
    • 0020098693 scopus 로고
    • Any discrimination rule can have arbitrarily bad probability of error for finite sample size
    • Devroye, L. (1982). Any discrimination rule can have arbitrarily bad probability of error for finite sample size. IEEE Transactions on Pattern Analysis and Machine Intelligence 4, 154-157.
    • (1982) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.4 , pp. 154-157
    • Devroye, L.1
  • 28
    • 21844511932 scopus 로고
    • On the strong universal consistency of nearest neighbor regression function estimates
    • Devroye, L., Györfi, L., Krzyzak, A. and Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. Annals of Statistics 22, 1371-1385.
    • (1994) Annals of Statistics , vol.22 , pp. 1371-1385
    • Devroye, L.1    Györfi, L.2    Krzyzak, A.3    Lugosi, G.4
  • 30
    • 0000568602 scopus 로고
    • Distribution-free consistency results in nonparametric discrimination and regression function estimation
    • Devroye, L. and Wagner, T. J. (1980). Distribution-free consistency results in nonparametric discrimination and regression function estimation. Annals of Statistics 8, 231-239.
    • (1980) Annals of Statistics , vol.8 , pp. 231-239
    • Devroye, L.1    Wagner, T.J.2
  • 31
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 32
    • 10044234903 scopus 로고    scopus 로고
    • Nearest neighbor ensemble
    • In: Kittler, J. and Petrou, M. and Nixon, M. S. and Hancock, E. R. (Eds.), IEEE Computer Society Press, Cambridge, UK.
    • Domeniconi, C. and Yan, B. (2004). Nearest neighbor ensemble. In: Kittler, J. and Petrou, M. and Nixon, M. S. and Hancock, E. R. (Eds.), Proceedings of the 17th International Conference on Pattern Recognition, 2004, 228-231. IEEE Computer Society Press, Cambridge, UK.
    • (2004) Proceedings of the 17th International Conference on Pattern Recognition, 2004 , pp. 228-231
    • Domeniconi, C.1    Yan, B.2
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors
    • Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors. Annals of Statistics 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 35
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: a statistics perspective
    • Genton, M. G. (2002). Classes of kernels for machine learning: a statistics perspective. Journal of Machine Learning Research 2, 299-312.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 36
    • 84865253237 scopus 로고    scopus 로고
    • Variance reduction in purely random forests
    • Genuer, R. (2012) Variance reduction in purely random forests. Journal of Nonparametric Statistics 24, 543-562.
    • (2012) Journal of Nonparametric Statistics , vol.24 , pp. 543-562
    • Genuer, R.1
  • 37
    • 70350623143 scopus 로고    scopus 로고
    • Random forests: some methodological insights. Technical report 6729
    • Institut national de recherche en informatique et en automatique, centre de recherche inria saclay, Ãle-de-france, Orsay, FR.
    • Genuer, R., Poggi, J. M. and Tuleau, C. (2008). Random forests: some methodological insights. Technical report 6729. Institut national de recherche en informatique et en automatique, centre de recherche inria saclay, Ãle-de-france, Orsay, FR. http://arxiv.org/pdf/0811.3619v1.pdf. Accessed May 14, 2012.
    • (2008)
    • Genuer, R.1    Poggi, J.M.2    Tuleau, C.3
  • 38
    • 67650478018 scopus 로고    scopus 로고
    • On graphically checking goodness-of-fit of binary logistic regression models
    • Gillmann, G. and Minder, C. E. (2009). On graphically checking goodness-of-fit of binary logistic regression models. Methods of Information in Medicine 48, 306-310.
    • (2009) Methods of Information in Medicine , vol.48 , pp. 306-310
    • Gillmann, G.1    Minder, C.E.2
  • 45
    • 12244252809 scopus 로고    scopus 로고
    • Universal consistency of local polynomial kernel regression estimates
    • Kohler, M. (2002). Universal consistency of local polynomial kernel regression estimates. Annals of the Institute of Statistical Mathematics 54, 879-899.
    • (2002) Annals of the Institute of Statistical Mathematics , vol.54 , pp. 879-899
    • Kohler, M.1
  • 46
    • 0035504044 scopus 로고    scopus 로고
    • Nonparametric regression estimation using penalized least squares
    • Kohler, M. and Krzyzak, A. (2001). Nonparametric regression estimation using penalized least squares. IEEE Transactions on Information Theory 47, 3054-3058.
    • (2001) IEEE Transactions on Information Theory , vol.47 , pp. 3054-3058
    • Kohler, M.1    Krzyzak, A.2
  • 47
    • 29444446826 scopus 로고    scopus 로고
    • Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data
    • Kohler, M., Krzyzak, A. and Walk, H. (2006). Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data. Journal of Multivariate Analysis 97, 311-323.
    • (2006) Journal of Multivariate Analysis , vol.97 , pp. 311-323
    • Kohler, M.1    Krzyzak, A.2    Walk, H.3
  • 48
    • 57749209659 scopus 로고    scopus 로고
    • Optimal global rates of convergence for nonparametric regression with unbounded data
    • Kohler, M., Krzyzak, A. and Walk, H. (2009). Optimal global rates of convergence for nonparametric regression with unbounded data. Journal of Statistical Planning and Inference 139, 1286-1296.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , pp. 1286-1296
    • Kohler, M.1    Krzyzak, A.2    Walk, H.3
  • 50
    • 38049035375 scopus 로고    scopus 로고
    • Practical experiences on the necessity of external validation
    • on behalf of the German Stroke Study Collaborators
    • König, I. R., Malley, J. D., Weimar, C., Diener, H. C., Ziegler, A. and on behalf of the German Stroke Study Collaborators (2007). Practical experiences on the necessity of external validation. Statistics in Medicine 26, 5499-5511.
    • (2007) Statistics in Medicine , vol.26 , pp. 5499-5511
    • König, I.R.1    Malley, J.D.2    Weimar, C.3    Diener, H.C.4    Ziegler, A.5
  • 51
    • 84903610080 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multi-category outcome: applications
    • Kruppa, J., Liu, Y., Diener, H. C., Holste, T., Weimar, C., König, I. R., and Ziegler, A. (2014). Probability estimation with machine learning methods for dichotomous and multi-category outcome: applications. Biometrical Journal 56, 564-583.
    • (2014) Biometrical Journal , vol.56 , pp. 564-583
    • Kruppa, J.1    Liu, Y.2    Diener, H.C.3    Holste, T.4    Weimar, C.5    König, I.R.6    Ziegler, A.7
  • 52
    • 84878300417 scopus 로고    scopus 로고
    • Consumer credit risk: individual probability estimates using machine learning
    • Kruppa, J., Schwarz, A., Arminger, G. and Ziegler, A. (2013). Consumer credit risk: individual probability estimates using machine learning. Expert Systems with Applications 40, 5125-5131.
    • (2013) Expert Systems with Applications , vol.40 , pp. 5125-5131
    • Kruppa, J.1    Schwarz, A.2    Arminger, G.3    Ziegler, A.4
  • 53
    • 84866731649 scopus 로고    scopus 로고
    • Risk estimation and risk prediction using machine learning methods
    • Kruppa, J., Ziegler, A. and König, I. R. (2012). Risk estimation and risk prediction using machine learning methods. Human Genetics 131, 1639-1654.
    • (2012) Human Genetics , vol.131 , pp. 1639-1654
    • Kruppa, J.1    Ziegler, A.2    König, I.R.3
  • 54
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee, B. K., Lessler, J. and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine 29, 337-346.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 55
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data
    • Lee, Y. K., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99, 67-81.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.K.1    Lin, Y.2    Wahba, G.3
  • 56
    • 84874825090 scopus 로고    scopus 로고
    • Multicategory reclassification statistics for assessing improvements in diagnostic accuracy
    • Li, J., Jiang, B. and Fine, J. P. (2013). Multicategory reclassification statistics for assessing improvements in diagnostic accuracy. Biostatistics 14, 382-394.
    • (2013) Biostatistics , vol.14 , pp. 382-394
    • Li, J.1    Jiang, B.2    Fine, J.P.3
  • 57
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin, Y. (2002). Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6, 259-275.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 61
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • Lugosi, G. and Zeger, K. (1995). Nonparametric estimation via empirical risk minimization. IEEE Transactions on Information Theory 41, 677-687.
    • (1995) IEEE Transactions on Information Theory , vol.41 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 64
    • 33947284406 scopus 로고    scopus 로고
    • Boosted classification trees and class probability/quantile estimation
    • Mease, D., Wyner, A. J. and Buja, A. (2007). Boosted classification trees and class probability/quantile estimation. Journal of Machine Learning Research 8, 409-439.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 409-439
    • Mease, D.1    Wyner, A.J.2    Buja, A.3
  • 66
    • 33846662159 scopus 로고    scopus 로고
    • Support vector machines with applications
    • Moguerza, J. M. and Muñoz, A. (2006). Support vector machines with applications. Statistical Science 21, 322-336.
    • (2006) Statistical Science , vol.21 , pp. 322-336
    • Moguerza, J.M.1    Muñoz, A.2
  • 67
    • 84862119222 scopus 로고    scopus 로고
    • European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts)
    • Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice and European Association for Cardiovascular Prevention and Rehabilitation
    • Perk, J., De Backer, G., Gohlke, H., Graham, I., Reiner, Z., Verschuren, M., Albus, C., Benlian, P., Boysen, G., Cifkova, R., Deaton, C., Ebrahim, S., Fisher, M., Germano, G., Hobbs, R., Hoes, A., Karadeniz, S., Mezzani, A., Prescott, E., Ryden, L., Scherer, M., Syvanne, M., Scholte op Reimer, W. J., Vrints, C., Wood, D., Zamorano, J. L., Zannad, F., Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice and European Association for Cardiovascular Prevention and Rehabilitation (2012). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Heart Journal 33, 1635-1701.
    • (2012) European Heart Journal , vol.33 , pp. 1635-1701
    • Perk, J.1    De Backer, G.2    Gohlke, H.3    Graham, I.4    Reiner, Z.5    Verschuren, M.6    Albus, C.7    Benlian, P.8    Boysen, G.9    Cifkova, R.10    Deaton, C.11    Ebrahim, S.12    Fisher, M.13    Germano, G.14    Hobbs, R.15    Hoes, A.16    Karadeniz, S.17    Mezzani, A.18    Prescott, E.19    Ryden, L.20    more..
  • 68
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • In: Smola, A. and Bartlett, P. and Schölkopf, B. and Schuurmans, D. (Eds.), MIT Press, Cambridge, MA
    • Platt, J. C. (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola, A. and Bartlett, P. and Schölkopf, B. and Schuurmans, D. (Eds.), Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, pp. 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 69
    • 79952239478 scopus 로고    scopus 로고
    • Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients
    • Porzelius, C., Johannes, M., Binder, H. and Beissbarth, T. (2011). Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients. Biometrical Journal 53, 190-201.
    • (2011) Biometrical Journal , vol.53 , pp. 190-201
    • Porzelius, C.1    Johannes, M.2    Binder, H.3    Beissbarth, T.4
  • 70
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411.
    • (1979) Biometrika , vol.66 , pp. 403-411
    • Prentice, R.L.1    Pyke, R.2
  • 71
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F. and Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning 52, 199-215.
    • (2003) Machine Learning , vol.52 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 72
    • 25144487077 scopus 로고    scopus 로고
    • Building multivariable regression models with continuous covariates in clinical epidemiology-with an emphasis on fractional polynomials
    • Royston, P. and Sauerbrei, W. (2005). Building multivariable regression models with continuous covariates in clinical epidemiology-with an emphasis on fractional polynomials. Methods of Information in Medicine 44, 561-571.
    • (2005) Methods of Information in Medicine , vol.44 , pp. 561-571
    • Royston, P.1    Sauerbrei, W.2
  • 74
    • 33748181096 scopus 로고    scopus 로고
    • Machine learning for detection and diagnosis of disease
    • Sajda, P. (2006). Machine learning for detection and diagnosis of disease. Annual Review of Biomedical Engineering 8, 537-565.
    • (2006) Annual Review of Biomedical Engineering , vol.8 , pp. 537-565
    • Sajda, P.1
  • 75
    • 84873393113 scopus 로고    scopus 로고
    • Optimal weighted nearest neighbour classifiers
    • Samworth, R. J. (2012). Optimal weighted nearest neighbour classifiers. Annals of Statistics 40, 2733-2763.
    • (2012) Annals of Statistics , vol.40 , pp. 2733-2763
    • Samworth, R.J.1
  • 76
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 78
    • 77954485448 scopus 로고    scopus 로고
    • On safari to random jungle: a fast implementation of random forests for high dimensional data
    • Schwarz, D. F., König, I. R. and Ziegler, A. (2010). On safari to random jungle: a fast implementation of random forests for high dimensional data. Bioinformatics 26, 1752-1758.
    • (2010) Bioinformatics , vol.26 , pp. 1752-1758
    • Schwarz, D.F.1    König, I.R.2    Ziegler, A.3
  • 79
    • 84867216448 scopus 로고    scopus 로고
    • The impact of a disease management program (coach) on the attainment of better cardiovascular risk control in dyslipidaemic patients at primary care centres (the DISSEMINATE study): a randomised controlled trial
    • DISSEMINATE study group.
    • Selvaraj, F. J., Mohamed, M., Omar, K., Nanthan, S., Kusiar, Z., Subramaniam, S. Y., Ali, N., Karanakaran, K., Ahmad, F., Low, W. H. and DISSEMINATE study group. (2012). The impact of a disease management program (coach) on the attainment of better cardiovascular risk control in dyslipidaemic patients at primary care centres (the DISSEMINATE study): a randomised controlled trial. BMC Family Practice 13, 97.
    • (2012) BMC Family Practice , vol.13 , pp. 97
    • Selvaraj, F.J.1    Mohamed, M.2    Omar, K.3    Nanthan, S.4    Kusiar, Z.5    Subramaniam, S.Y.6    Ali, N.7    Karanakaran, K.8    Ahmad, F.9    Low, W.H.10
  • 80
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing 14, 199-222.
    • (2004) Statistics and Computing , vol.14 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 81
    • 0001293371 scopus 로고
    • Consistent window estimation in nonparametric regression
    • Spiegelman, C. and Sacks, J. (1980). Consistent window estimation in nonparametric regression. Annals of Statistics 8, 240-246.
    • (1980) Annals of Statistics , vol.8 , pp. 240-246
    • Spiegelman, C.1    Sacks, J.2
  • 82
    • 85153148677 scopus 로고
    • accessed April 01, 2013
    • Stanski, H. R., Wilson, L. J. and Burrows, W. R. (1989). Survey of common verification methods in meteorology. World weather watch tech. rep. 8, wmo/td no. 358. world meteorological organization. http://www.cawcr.gov.au/projects/verification/Stanski_et_al/Stanski_et_al.html, accessed April 01, 2013.
    • (1989)
    • Stanski, H.R.1    Wilson, L.J.2    Burrows, W.R.3
  • 83
    • 85152844454 scopus 로고    scopus 로고
    • kNN: k-nearest neighbors
    • In: Wu, X. and Kumar, V. (Eds.), CRC Press, Boca Raton, FL
    • Steinbach, M. and Tan, P. N. (2009). kNN: k-nearest neighbors. In: Wu, X. and Kumar, V. (Eds.), The Top Ten Algorithms in Data Mining, CRC Press, Boca Raton, FL, pp. 151-161.
    • (2009) The Top Ten Algorithms in Data Mining , pp. 151-161
    • Steinbach, M.1    Tan, P.N.2
  • 84
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using gaussian kernels
    • Steinwart, I. and Scovel, C. (2007). Fast rates for support vector machines using gaussian kernels. Annals of Statistics 35, 575-607.
    • (2007) Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 86
    • 0000439527 scopus 로고
    • Consistent nonparametric regression
    • Stone, C. J. (1977). Consistent nonparametric regression. Annals of Statistics 5, 595-645.
    • (1977) Annals of Statistics , vol.5 , pp. 595-645
    • Stone, C.J.1
  • 87
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Annals of Statistics 10, 1040-1053.
    • (1982) Annals of Statistics , vol.10 , pp. 1040-1053
    • Stone, C.J.1
  • 88
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging, and random forests
    • Strobl, C., Malley, J. and Tutz, G. (2009). An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods 14, 323-348.
    • (2009) Psychological Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 90
    • 84859251557 scopus 로고    scopus 로고
    • Resolving confusion of tongues in statistics and machine learning: a primer for biologists and bioinformaticians
    • van Iterson, M., van Haagen, H. H. and Goeman, J. J. (2012). Resolving confusion of tongues in statistics and machine learning: a primer for biologists and bioinformaticians. Proteomics 12, 543-549.
    • (2012) Proteomics , vol.12 , pp. 543-549
    • van Iterson, M.1    van Haagen, H.H.2    Goeman, J.J.3
  • 92
    • 85153144778 scopus 로고    scopus 로고
    • Soft and hard classification by reproducing kernel hilbert space methods
    • Wahba, G. (2002). Soft and hard classification by reproducing kernel hilbert space methods. Proceedings of the National Academy of Sciences, USA 102, 12 332-12 337.
    • (2002) Proceedings of the National Academy of Sciences, USA , vol.102
    • Wahba, G.1
  • 93
    • 33845579837 scopus 로고    scopus 로고
    • Strong universal consistency of smooth kernel regression estimates
    • Walk, H. (2005). Strong universal consistency of smooth kernel regression estimates. Annals of the Institute of Statistical Mathematics 57, 665-685.
    • (2005) Annals of the Institute of Statistical Mathematics , vol.57 , pp. 665-685
    • Walk, H.1
  • 94
    • 40249094631 scopus 로고    scopus 로고
    • Probability estimation for large-margin classifiers
    • Wang, J., Shen, X. and Liu, Y. (2008). Probability estimation for large-margin classifiers. Biometrika 95, 149-167.
    • (2008) Biometrika , vol.95 , pp. 149-167
    • Wang, J.1    Shen, X.2    Liu, Y.3
  • 95
    • 34250708395 scopus 로고    scopus 로고
    • On l-norm multi-class support vector machines: methodology and theory
    • Wang, L. and Shen, X. (2007). On l-norm multi-class support vector machines: methodology and theory. Journal of the American Statistical Association 102, 595-602.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 595-602
    • Wang, L.1    Shen, X.2
  • 96
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu, T. F., Lin, C. J. and Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975-1005.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 98
    • 78649719165 scopus 로고    scopus 로고
    • Non-crossing large-margin probability estimation and its application to robust SVM via preconditioning
    • Wu, Y. and Liu, Y. (2011). Non-crossing large-margin probability estimation and its application to robust SVM via preconditioning. Statistical Methodology 8, 56-67.
    • (2011) Statistical Methodology , vol.8 , pp. 56-67
    • Wu, Y.1    Liu, Y.2
  • 101
    • 85052861831 scopus 로고    scopus 로고
    • SVM: support vector machines
    • In: Wu, X. and Kumar, V., Eds.), CRC Press, Boca Raton, FL
    • Xue, H., Yang, Q. and Chen, S. (2009). SVM: support vector machines. In: Wu, X. and Kumar, V., (Eds.), The Top Ten Algorithms in Data Mining. CRC Press, Boca Raton, FL, pp. 37-59.
    • (2009) The Top Ten Algorithms in Data Mining , pp. 37-59
    • Xue, H.1    Yang, Q.2    Chen, S.3
  • 103
    • 84878914736 scopus 로고    scopus 로고
    • Multicategory large-margin unified machines
    • Zhang, C. and Liu, Y. (2013). Multicategory large-margin unified machines. Journal of Machine Learning Research 14, 1349-1386.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 1349-1386
    • Zhang, C.1    Liu, Y.2
  • 104
    • 26944483874 scopus 로고    scopus 로고
    • Statistical analysis of some multi-category large margin classification methods
    • Zhang, T. (2004a). Statistical analysis of some multi-category large margin classification methods. Journal of Machine Learning Research 5, 1225-1251.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1225-1251
    • Zhang, T.1
  • 105
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang, T. (2004b). Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics 32, 56-85.
    • (2004) Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.