메뉴 건너뛰기




Volumn 35, Issue 7, 2016, Pages 1159-1177

Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events

Author keywords

Bayesian regularisation; Overfitting; Rare events; Shrinkage

Indexed keywords

ELASTIC TISSUE; MAXIMUM LIKELIHOOD METHOD; MODEL; NOISE; PREDICTION; STATISTICAL MODEL; BAYES THEOREM; BIOSTATISTICS; COMPUTER SIMULATION; HUMAN; MALE; MORTALITY; PENIS TUMOR; PROGNOSIS; REGRESSION ANALYSIS; RISK FACTOR; STATISTICAL ANALYSIS; STATISTICAL BIAS;

EID: 84959490685     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6782     Document Type: Article
Times cited : (241)

References (49)
  • 2
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: application and impact of prognostic models in clinical practice
    • Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. British Medical Journal 2009; 338.
    • (2009) British Medical Journal , vol.338
    • Moons, K.G.M.1    Altman, D.G.2    Vergouwe, Y.3    Royston, P.4
  • 3
    • 84860113852 scopus 로고    scopus 로고
    • Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker
    • Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. HEART 2012; 98(9):683-690.
    • (2012) HEART , vol.98 , Issue.9 , pp. 683-690
    • Moons, K.G.M.1    Kengne, A.P.2    Woodward, M.3    Royston, P.4    Vergouwe, Y.5    Altman, D.G.6    Grobbee, D.E.7
  • 4
    • 47149088261 scopus 로고    scopus 로고
    • Predicting cardiovascular risk in England and Wales: prospective derivation and validation of qrisk2
    • Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of qrisk2. BMJ 2008; 336(7659):1475-1482.
    • (2008) BMJ , vol.336 , Issue.7659 , pp. 1475-1482
    • Hippisley-Cox, J.1    Coupland, C.2    Vinogradova, Y.3    Robson, J.4    Minhas, R.5    Sheikh, A.6    Brindle, P.7
  • 5
    • 39549093148 scopus 로고    scopus 로고
    • General cardiovascular risk profile for use in primary care: the Framingham Heart Study
    • D'Agostino RB, Vasan MJ RS and Pencina, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation; 117(1):743-53.
    • Circulation , vol.117 , Issue.1 , pp. 743-753
    • D'Agostino, R.B.1    Vasan, M.J.2    Wolf, P.A.3    Cobain, M.4    Massaro, J.M.5    Kannel, W.B.6
  • 7
    • 84977833274 scopus 로고    scopus 로고
    • DNA replication licensing factors and aneuploidy are linked to tumour cell cycle states and clinical outcome in penile carcinoma
    • Kayes O, Loddo M, Ambler G, Stoeber K, Williams GH, Ralph DJ, Minhas S. DNA replication licensing factors and aneuploidy are linked to tumour cell cycle states and clinical outcome in penile carcinoma. European Urology Supplements 2009; 8(4):368.
    • (2009) European Urology Supplements , vol.8 , Issue.4 , pp. 368
    • Kayes, O.1    Loddo, M.2    Ambler, G.3    Stoeber, K.4    Williams, G.H.5    Ralph, D.J.6    Minhas, S.7
  • 10
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology 2007; 165(6):710-718.
    • (2007) American Journal of Epidemiology , vol.165 , Issue.6 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 12
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statistics in Medicine 2000; 19(8):1059-1079.
    • (2000) Statistics in Medicine , vol.19 , Issue.8 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell, F.E.3    Habbema, J.D.F.4
  • 13
    • 84861193203 scopus 로고    scopus 로고
    • An evaluation of penalised survival methods for developing prognostic models with rare events
    • Ambler G, Seaman S, Omar RZ. An evaluation of penalised survival methods for developing prognostic models with rare events. Statistics in Medicine 2011; 31(11-12, SI):1150-1161.
    • (2011) Statistics in Medicine , vol.31 , Issue.11-12 , pp. 1150-1161
    • Ambler, G.1    Seaman, S.2    Omar, R.Z.3
  • 14
    • 77953325160 scopus 로고    scopus 로고
    • Sparse regression techniques in low-dimensional survival data settings
    • Porzelius C, Schumacher M, Binder H. Sparse regression techniques in low-dimensional survival data settings. Statistics and Computing 2010; 20(2):151-163.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 151-163
    • Porzelius, C.1    Schumacher, M.2    Binder, H.3
  • 15
    • 84959571506 scopus 로고    scopus 로고
    • Penalized regression: bootstrap confidence intervals and variable selection for high-dimensional data sets. Ph.D. Thesis, Universita degli Studi di Milano
    • Sortari S. Penalized regression: bootstrap confidence intervals and variable selection for high-dimensional data sets. Ph.D. Thesis, Universita degli Studi di Milano, 2011.
    • (2011)
    • Sortari, S.1
  • 16
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian lassos
    • Kyung M, Gill J, Ghosh M, Casella G. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 2010; 5(2):369-411.
    • (2010) Bayesian Analysis , vol.5 , Issue.2 , pp. 369-411
    • Kyung, M.1    Gill, J.2    Ghosh, M.3    Casella, G.4
  • 18
    • 84861193919 scopus 로고    scopus 로고
    • Hierarchical Bayesian formulations for selecting variables in regression models
    • Rockova V, Lesaffre E, Luime J, Lowenberg B. Hierarchical Bayesian formulations for selecting variables in regression models. Statistics in Medicine 2012; 31(11-12, SI):1221-1237.
    • (2012) Statistics in Medicine , vol.31 , Issue.11-12 , pp. 1221-1237
    • Rockova, V.1    Lesaffre, E.2    Luime, J.3    Lowenberg, B.4
  • 21
    • 84925910769 scopus 로고
    • Ridge regression - when biased estimation is better
    • Feig DG. Ridge regression - when biased estimation is better. Social Science Quarterly 1978; 58(4):708-716.
    • (1978) Social Science Quarterly , vol.58 , Issue.4 , pp. 708-716
    • Feig, D.G.1
  • 25
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 2006; 101(476):1418-1429.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 26
    • 77952566299 scopus 로고    scopus 로고
    • High-dimensional Cox models: the choice of penalty as part of the model building process
    • Benner A, Zucknick M, Hielscher T, Ittrich C, Mansmann U. High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical Journal 2010; 52(1, SI):50-69.
    • (2010) Biometrical Journal , vol.52 , Issue.1 , pp. 50-69
    • Benner, A.1    Zucknick, M.2    Hielscher, T.3    Ittrich, C.4    Mansmann, U.5
  • 27
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics 2011; 5(1):232-253.
    • (2011) Annals of Applied Statistics , vol.5 , Issue.1 , pp. 232-253
    • Breheny, P.1    Huang, J.2
  • 28
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan JQ, Li RZ. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001; 96(456):1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.Q.1    Li, R.Z.2
  • 29
    • 47249142538 scopus 로고    scopus 로고
    • Scaling regression inputs by dividing by two standard deviations
    • Gelman A. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 2008; 27(15):2865-2873.
    • (2008) Statistics in Medicine , vol.27 , Issue.15 , pp. 2865-2873
    • Gelman, A.1
  • 30
    • 78649617877 scopus 로고    scopus 로고
    • L1 and l2 penalized regression models
    • Technical Document
    • Goeman JJ. L1 and l2 penalized regression models, Technical Document, 2012.
    • (2012)
    • Goeman, J.J.1
  • 32
    • 84952496879 scopus 로고
    • A note on the delta method
    • Oehlert GW. A note on the delta method. The American Statistician 1992; 46(1):27-29.
    • (1992) The American Statistician , vol.46 , Issue.1 , pp. 27-29
    • Oehlert, G.W.1
  • 34
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian regularisation in structured additive regression: aăunifying perspective on shrinkage, smoothing and predictor selection
    • Fahrmeir L, Kneib T, Konrath S. Bayesian regularisation in structured additive regression: aăunifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing 2010; 20(2):203-219.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 35
  • 37
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and Bayesian strategies
    • Ishwaran H, Rao JS. Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics 2005; 33(2):730-773.
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 38
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: what, how and which
    • O'Hara RB, Sillanpaa MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 2009; 4(1):85-117.
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-117
    • O'Hara, R.B.1    Sillanpaa, M.J.2
  • 39
    • 0037203173 scopus 로고    scopus 로고
    • Simplifying a prognostic model: a simulation study based on clinical data
    • Ambler G, Brady AR, Royston P. Simplifying a prognostic model: a simulation study based on clinical data. Statistics in Medicine 2002; 21(24):3803-3822.
    • (2002) Statistics in Medicine , vol.21 , Issue.24 , pp. 3803-3822
    • Ambler, G.1    Brady, A.R.2    Royston, P.3
  • 43
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang J, Ma S, Zhang CH. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica 2008; 18(4):1603-1618.
    • (2008) Statistica Sinica , vol.18 , Issue.4 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.H.3
  • 44
    • 84878847708 scopus 로고    scopus 로고
    • Penalized regression and risk prediction in genome-wide association studies
    • Austin E, Pan W, Shen X. Penalized regression and risk prediction in genome-wide association studies. Statistical Analysis and Data Mining 2013; 6(4):315-328.
    • (2013) Statistical Analysis and Data Mining , vol.6 , Issue.4 , pp. 315-328
    • Austin, E.1    Pan, W.2    Shen, X.3
  • 45
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80(1):27-38.
    • (1993) Biometrika , vol.80 , Issue.1 , pp. 27-38
    • Firth, D.1
  • 46
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21(16):2409-2419.
    • (2002) Statistics in Medicine , vol.21 , Issue.16 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 47
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
    • van der Ploeg T, Austin P, Steyerberg E. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology 2014; 14(1):137.
    • (2014) BMC Medical Research Methodology , vol.14 , Issue.1 , pp. 137
    • van der Ploeg, T.1    Austin, P.2    Steyerberg, E.3
  • 48
    • 84923923813 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine 2015; 162(1):55-63.
    • (2015) Annals of Internal Medicine , vol.162 , Issue.1 , pp. 55-63
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.