-
1
-
-
67650022801
-
Prognosis and prognostic research: what, why, and how
-
Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman G. Prognosis and prognostic research: what, why, and how? British Medical Journal 2009; 338.
-
(2009)
British Medical Journal
, vol.338
-
-
Moons, K.G.M.1
Royston, P.2
Vergouwe, Y.3
Grobbee, D.E.4
Altman, G.5
-
2
-
-
67650089602
-
Prognosis and prognostic research: application and impact of prognostic models in clinical practice
-
Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. British Medical Journal 2009; 338.
-
(2009)
British Medical Journal
, vol.338
-
-
Moons, K.G.M.1
Altman, D.G.2
Vergouwe, Y.3
Royston, P.4
-
3
-
-
84860113852
-
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker
-
Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. HEART 2012; 98(9):683-690.
-
(2012)
HEART
, vol.98
, Issue.9
, pp. 683-690
-
-
Moons, K.G.M.1
Kengne, A.P.2
Woodward, M.3
Royston, P.4
Vergouwe, Y.5
Altman, D.G.6
Grobbee, D.E.7
-
4
-
-
47149088261
-
Predicting cardiovascular risk in England and Wales: prospective derivation and validation of qrisk2
-
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of qrisk2. BMJ 2008; 336(7659):1475-1482.
-
(2008)
BMJ
, vol.336
, Issue.7659
, pp. 1475-1482
-
-
Hippisley-Cox, J.1
Coupland, C.2
Vinogradova, Y.3
Robson, J.4
Minhas, R.5
Sheikh, A.6
Brindle, P.7
-
5
-
-
39549093148
-
General cardiovascular risk profile for use in primary care: the Framingham Heart Study
-
D'Agostino RB, Vasan MJ RS and Pencina, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation; 117(1):743-53.
-
Circulation
, vol.117
, Issue.1
, pp. 743-753
-
-
D'Agostino, R.B.1
Vasan, M.J.2
Wolf, P.A.3
Cobain, M.4
Massaro, J.M.5
Kannel, W.B.6
-
6
-
-
84894240552
-
A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy
-
O' Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, Biagini E, Gimeno R, Limongelli G, McKenna W, Omar R, Elliott P. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy. European Heart Journal 2013; 33(1):364.
-
(2013)
European Heart Journal
, vol.33
, Issue.1
, pp. 364
-
-
O' Mahony, C.1
Jichi, F.2
Pavlou, M.3
Monserrat, L.4
Anastasakis, A.5
Rapezzi, C.6
Biagini, E.7
Gimeno, R.8
Limongelli, G.9
McKenna, W.10
Omar, R.11
Elliott, P.12
-
7
-
-
84977833274
-
DNA replication licensing factors and aneuploidy are linked to tumour cell cycle states and clinical outcome in penile carcinoma
-
Kayes O, Loddo M, Ambler G, Stoeber K, Williams GH, Ralph DJ, Minhas S. DNA replication licensing factors and aneuploidy are linked to tumour cell cycle states and clinical outcome in penile carcinoma. European Urology Supplements 2009; 8(4):368.
-
(2009)
European Urology Supplements
, vol.8
, Issue.4
, pp. 368
-
-
Kayes, O.1
Loddo, M.2
Ambler, G.3
Stoeber, K.4
Williams, G.H.5
Ralph, D.J.6
Minhas, S.7
-
9
-
-
0030474271
-
A simulation study of the number of events per variable in logistic regression analysis
-
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49(12):1373-1379.
-
(1996)
Journal of Clinical Epidemiology
, vol.49
, Issue.12
, pp. 1373-1379
-
-
Peduzzi, P.1
Concato, J.2
Kemper, E.3
Holford, T.R.4
Feinstein, A.R.5
-
10
-
-
33847382959
-
Relaxing the rule of ten events per variable in logistic and Cox regression
-
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology 2007; 165(6):710-718.
-
(2007)
American Journal of Epidemiology
, vol.165
, Issue.6
, pp. 710-718
-
-
Vittinghoff, E.1
McCulloch, C.E.2
-
11
-
-
84861556816
-
Reporting and methods in clinical prediction research: a systematic review
-
Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KGM. Reporting and methods in clinical prediction research: a systematic review. PLOS Medicine 2012; 9(5).
-
(2012)
PLOS Medicine
, vol.9
, Issue.5
-
-
Bouwmeester, W.1
Zuithoff, N.P.A.2
Mallett, S.3
Geerlings, M.I.4
Vergouwe, Y.5
Steyerberg, E.W.6
Altman, D.G.7
Moons, K.G.M.8
-
12
-
-
0034732710
-
Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
-
Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statistics in Medicine 2000; 19(8):1059-1079.
-
(2000)
Statistics in Medicine
, vol.19
, Issue.8
, pp. 1059-1079
-
-
Steyerberg, E.W.1
Eijkemans, M.J.C.2
Harrell, F.E.3
Habbema, J.D.F.4
-
13
-
-
84861193203
-
An evaluation of penalised survival methods for developing prognostic models with rare events
-
Ambler G, Seaman S, Omar RZ. An evaluation of penalised survival methods for developing prognostic models with rare events. Statistics in Medicine 2011; 31(11-12, SI):1150-1161.
-
(2011)
Statistics in Medicine
, vol.31
, Issue.11-12
, pp. 1150-1161
-
-
Ambler, G.1
Seaman, S.2
Omar, R.Z.3
-
14
-
-
77953325160
-
Sparse regression techniques in low-dimensional survival data settings
-
Porzelius C, Schumacher M, Binder H. Sparse regression techniques in low-dimensional survival data settings. Statistics and Computing 2010; 20(2):151-163.
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 151-163
-
-
Porzelius, C.1
Schumacher, M.2
Binder, H.3
-
15
-
-
84959571506
-
-
Penalized regression: bootstrap confidence intervals and variable selection for high-dimensional data sets. Ph.D. Thesis, Universita degli Studi di Milano
-
Sortari S. Penalized regression: bootstrap confidence intervals and variable selection for high-dimensional data sets. Ph.D. Thesis, Universita degli Studi di Milano, 2011.
-
(2011)
-
-
Sortari, S.1
-
16
-
-
78049484065
-
Penalized regression, standard errors, and Bayesian lassos
-
Kyung M, Gill J, Ghosh M, Casella G. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 2010; 5(2):369-411.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.2
, pp. 369-411
-
-
Kyung, M.1
Gill, J.2
Ghosh, M.3
Casella, G.4
-
18
-
-
84861193919
-
Hierarchical Bayesian formulations for selecting variables in regression models
-
Rockova V, Lesaffre E, Luime J, Lowenberg B. Hierarchical Bayesian formulations for selecting variables in regression models. Statistics in Medicine 2012; 31(11-12, SI):1221-1237.
-
(2012)
Statistics in Medicine
, vol.31
, Issue.11-12
, pp. 1221-1237
-
-
Rockova, V.1
Lesaffre, E.2
Luime, J.3
Lowenberg, B.4
-
21
-
-
84925910769
-
Ridge regression - when biased estimation is better
-
Feig DG. Ridge regression - when biased estimation is better. Social Science Quarterly 1978; 58(4):708-716.
-
(1978)
Social Science Quarterly
, vol.58
, Issue.4
, pp. 708-716
-
-
Feig, D.G.1
-
25
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 2006; 101(476):1418-1429.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
26
-
-
77952566299
-
High-dimensional Cox models: the choice of penalty as part of the model building process
-
Benner A, Zucknick M, Hielscher T, Ittrich C, Mansmann U. High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical Journal 2010; 52(1, SI):50-69.
-
(2010)
Biometrical Journal
, vol.52
, Issue.1
, pp. 50-69
-
-
Benner, A.1
Zucknick, M.2
Hielscher, T.3
Ittrich, C.4
Mansmann, U.5
-
27
-
-
80053013888
-
Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
-
Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics 2011; 5(1):232-253.
-
(2011)
Annals of Applied Statistics
, vol.5
, Issue.1
, pp. 232-253
-
-
Breheny, P.1
Huang, J.2
-
28
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan JQ, Li RZ. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001; 96(456):1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.Q.1
Li, R.Z.2
-
29
-
-
47249142538
-
Scaling regression inputs by dividing by two standard deviations
-
Gelman A. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 2008; 27(15):2865-2873.
-
(2008)
Statistics in Medicine
, vol.27
, Issue.15
, pp. 2865-2873
-
-
Gelman, A.1
-
30
-
-
78649617877
-
L1 and l2 penalized regression models
-
Technical Document
-
Goeman JJ. L1 and l2 penalized regression models, Technical Document, 2012.
-
(2012)
-
-
Goeman, J.J.1
-
32
-
-
84952496879
-
A note on the delta method
-
Oehlert GW. A note on the delta method. The American Statistician 1992; 46(1):27-29.
-
(1992)
The American Statistician
, vol.46
, Issue.1
, pp. 27-29
-
-
Oehlert, G.W.1
-
34
-
-
77953326052
-
Bayesian regularisation in structured additive regression: aăunifying perspective on shrinkage, smoothing and predictor selection
-
Fahrmeir L, Kneib T, Konrath S. Bayesian regularisation in structured additive regression: aăunifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing 2010; 20(2):203-219.
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 203-219
-
-
Fahrmeir, L.1
Kneib, T.2
Konrath, S.3
-
35
-
-
79952590314
-
High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance
-
Kneib T, Konrath S, Fahrmeir L. High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2011; 60(1):51-70.
-
(2011)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.60
, Issue.1
, pp. 51-70
-
-
Kneib, T.1
Konrath, S.2
Fahrmeir, L.3
-
37
-
-
22944460748
-
Spike and slab variable selection: frequentist and Bayesian strategies
-
Ishwaran H, Rao JS. Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics 2005; 33(2):730-773.
-
(2005)
Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
38
-
-
69249230467
-
A review of Bayesian variable selection methods: what, how and which
-
O'Hara RB, Sillanpaa MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 2009; 4(1):85-117.
-
(2009)
Bayesian Analysis
, vol.4
, Issue.1
, pp. 85-117
-
-
O'Hara, R.B.1
Sillanpaa, M.J.2
-
39
-
-
0037203173
-
Simplifying a prognostic model: a simulation study based on clinical data
-
Ambler G, Brady AR, Royston P. Simplifying a prognostic model: a simulation study based on clinical data. Statistics in Medicine 2002; 21(24):3803-3822.
-
(2002)
Statistics in Medicine
, vol.21
, Issue.24
, pp. 3803-3822
-
-
Ambler, G.1
Brady, A.R.2
Royston, P.3
-
40
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21(1):128-138.
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
Gerds, T.4
Gonen, M.5
Obuchowski, N.6
Pencina, M.J.7
Kattan, M.W.8
-
43
-
-
51049096710
-
Adaptive lasso for sparse high-dimensional regression models
-
Huang J, Ma S, Zhang CH. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica 2008; 18(4):1603-1618.
-
(2008)
Statistica Sinica
, vol.18
, Issue.4
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.2
Zhang, C.H.3
-
44
-
-
84878847708
-
Penalized regression and risk prediction in genome-wide association studies
-
Austin E, Pan W, Shen X. Penalized regression and risk prediction in genome-wide association studies. Statistical Analysis and Data Mining 2013; 6(4):315-328.
-
(2013)
Statistical Analysis and Data Mining
, vol.6
, Issue.4
, pp. 315-328
-
-
Austin, E.1
Pan, W.2
Shen, X.3
-
45
-
-
0002178053
-
Bias reduction of maximum likelihood estimates
-
Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80(1):27-38.
-
(1993)
Biometrika
, vol.80
, Issue.1
, pp. 27-38
-
-
Firth, D.1
-
46
-
-
0037199788
-
A solution to the problem of separation in logistic regression
-
Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21(16):2409-2419.
-
(2002)
Statistics in Medicine
, vol.21
, Issue.16
, pp. 2409-2419
-
-
Heinze, G.1
Schemper, M.2
-
47
-
-
84923873960
-
Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
-
van der Ploeg T, Austin P, Steyerberg E. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology 2014; 14(1):137.
-
(2014)
BMC Medical Research Methodology
, vol.14
, Issue.1
, pp. 137
-
-
van der Ploeg, T.1
Austin, P.2
Steyerberg, E.3
-
48
-
-
84923923813
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement
-
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine 2015; 162(1):55-63.
-
(2015)
Annals of Internal Medicine
, vol.162
, Issue.1
, pp. 55-63
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.M.4
|