-
1
-
-
77949875923
-
Biomass-derived syngas fermentation into biofuels: opportunities and challenges
-
Munasinghe P.C., Khanal S.K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour. Technol. 2010, 101:5013-5022.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 5013-5022
-
-
Munasinghe, P.C.1
Khanal, S.K.2
-
2
-
-
0036714783
-
Microbial cellulose utilization: fundamentals and biotechnology
-
Lynd L.R., et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66:506-577.
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 506-577
-
-
Lynd, L.R.1
-
3
-
-
48649097223
-
Third generation biofuels via direct cellulose fermentation
-
Carere C.R., et al. Third generation biofuels via direct cellulose fermentation. Int. J. Mol. Sci. 2008, 9:1342-1360.
-
(2008)
Int. J. Mol. Sci.
, vol.9
, pp. 1342-1360
-
-
Carere, C.R.1
-
4
-
-
67649784905
-
Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose
-
Xu Q., et al. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 2009, 20:364-371.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 364-371
-
-
Xu, Q.1
-
5
-
-
79955611428
-
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
-
Higashide W., et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 2011, 77:2727-2733.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 2727-2733
-
-
Higashide, W.1
-
6
-
-
79954590746
-
Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production
-
Jin M., et al. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 2011, 108:1290-1297.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 1290-1297
-
-
Jin, M.1
-
7
-
-
71849086611
-
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
-
Atsumi S., et al. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 2009, 27:1177-1180.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 1177-1180
-
-
Atsumi, S.1
-
8
-
-
4344650394
-
Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil
-
Semêdo L.T.A.S., et al. Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil. Int. J. Syst. Evol. Microbiol. 2004, 54:1323-1328.
-
(2004)
Int. J. Syst. Evol. Microbiol.
, vol.54
, pp. 1323-1328
-
-
Semêdo, L.T.A.S.1
-
9
-
-
75949107568
-
Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree
-
Kim B.-C., et al. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J. Microbiol. (Seoul, Korea) 2009, 47:699-704.
-
(2009)
J. Microbiol. (Seoul, Korea)
, vol.47
, pp. 699-704
-
-
Kim, B.-C.1
-
10
-
-
0036865981
-
Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae)
-
Distel D.L., et al. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 2002, 52:2261-2269.
-
(2002)
Int. J. Syst. Evol. Microbiol.
, vol.52
, pp. 2261-2269
-
-
Distel, D.L.1
-
11
-
-
79955838819
-
Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a mid-Atlantic ridge hydrothermal vent
-
Podosokorskaya O.A., et al. Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a mid-Atlantic ridge hydrothermal vent. Int. J. Syst. Evol. Microbiol. 2011, 61:1160-1164.
-
(2011)
Int. J. Syst. Evol. Microbiol.
, vol.61
, pp. 1160-1164
-
-
Podosokorskaya, O.A.1
-
12
-
-
48549102338
-
Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs
-
Miroshnichenko M.L., et al. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int. J. Syst. Evol. Microbiol. 2008, 58:1492-1496.
-
(2008)
Int. J. Syst. Evol. Microbiol.
, vol.58
, pp. 1492-1496
-
-
Miroshnichenko, M.L.1
-
13
-
-
80053239702
-
Ruminococcus champanellensis sp. nov., a cellulose-degrading bacteria from the human gut microbiota
-
Chassard C., et al. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacteria from the human gut microbiota. Int. J. Syst. Evol. Microbiol. 2011, 10.1099/ijs.0.027375-0.
-
(2011)
Int. J. Syst. Evol. Microbiol.
-
-
Chassard, C.1
-
14
-
-
79958236181
-
Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms
-
Chang L., et al. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. App. Microbiol. Biotechnol. 2011, 90:1933-1942.
-
(2011)
App. Microbiol. Biotechnol.
, vol.90
, pp. 1933-1942
-
-
Chang, L.1
-
15
-
-
77958598358
-
Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7
-
Bruant G., et al. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PloS ONE 2010, 5:e13033.
-
(2010)
PloS ONE
, vol.5
-
-
Bruant, G.1
-
16
-
-
79952536631
-
Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains
-
Araujo G.S., et al. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour. Technol. 2011, 102:5248-5250.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 5248-5250
-
-
Araujo, G.S.1
-
17
-
-
67449124798
-
Bioprospecting metagenomes: glycosyl hydrolases for converting biomass
-
Li L.-L., et al. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels 2009, 2:10.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 10
-
-
Li, L.-L.1
-
18
-
-
77951134703
-
A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion
-
Sommer M.O.A., et al. A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol. Syst. Biol. 2010, 6:360.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 360
-
-
Sommer, M.O.A.1
-
19
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
Schirmer A., et al. Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
-
20
-
-
70149113922
-
Synthesis of methyl halides from biomass using engineered microbes
-
Bayer T.S., et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 2009, 131:6508-6515.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6508-6515
-
-
Bayer, T.S.1
-
21
-
-
57449087447
-
Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis
-
Shi Z., Blaschek H.P. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl. Environ. Microbiol. 2008, 74:7709-7714.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 7709-7714
-
-
Shi, Z.1
Blaschek, H.P.2
-
22
-
-
79955125027
-
Small RNAs in the genus Clostridium
-
Chen Y., et al. Small RNAs in the genus Clostridium. mBio 2011, 2:e00340-e410.
-
(2011)
mBio
, vol.2
-
-
Chen, Y.1
-
23
-
-
51849142353
-
Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis
-
Senger R.S., Papoutsakis E.T. Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol. Bioeng. 2008, 101:1036-1052.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 1036-1052
-
-
Senger, R.S.1
Papoutsakis, E.T.2
-
24
-
-
51849115840
-
Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network
-
Lee J., et al. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. App. Microbiol. Biotechnol. 2008, 80:849-862.
-
(2008)
App. Microbiol. Biotechnol.
, vol.80
, pp. 849-862
-
-
Lee, J.1
-
25
-
-
51849157931
-
Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems
-
Senger R.S., Papoutsakis E.T. Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol. Bioeng. 2008, 101:1053-1071.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 1053-1071
-
-
Senger, R.S.1
Papoutsakis, E.T.2
-
26
-
-
70449575862
-
Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production
-
Lee J.Y., et al. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol. J. 2009, 4:1432-1440.
-
(2009)
Biotechnol. J.
, vol.4
, pp. 1432-1440
-
-
Lee, J.Y.1
-
27
-
-
70349959827
-
Improved genome annotation for Zymomonas mobilis
-
Yang S., et al. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 2009, 27:893-894.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 893-894
-
-
Yang, S.1
-
28
-
-
61949193780
-
Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
-
Yang S., et al. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 2009, 10:34.
-
(2009)
BMC Genomics
, vol.10
, pp. 34
-
-
Yang, S.1
-
29
-
-
77953738245
-
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
-
Yang S., et al. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10395-10400.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 10395-10400
-
-
Yang, S.1
-
30
-
-
77952774965
-
Exploring biodiversity for cellulosic biofuel production
-
Gowen C.M., Fong S.S. Exploring biodiversity for cellulosic biofuel production. Chem. Biodivers. 2010, 7:1086-1097.
-
(2010)
Chem. Biodivers.
, vol.7
, pp. 1086-1097
-
-
Gowen, C.M.1
Fong, S.S.2
-
31
-
-
67649214495
-
Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis
-
Raman B., et al. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 2009, 4:e5271.
-
(2009)
PLoS ONE
, vol.4
-
-
Raman, B.1
-
32
-
-
0020365678
-
Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum
-
Herrero A.A., et al. Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim. Biophys. Acta 1982, 693:195-204.
-
(1982)
Biochim. Biophys. Acta
, vol.693
, pp. 195-204
-
-
Herrero, A.A.1
-
33
-
-
77954736119
-
Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
-
Roberts S.B., et al. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst. Biol. 2010, 4:31.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 31
-
-
Roberts, S.B.1
-
34
-
-
77954701087
-
Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum
-
Gowen C.M., Fong S.S. Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol. J. 2010, 5:759-767.
-
(2010)
Biotechnol. J.
, vol.5
, pp. 759-767
-
-
Gowen, C.M.1
Fong, S.S.2
-
35
-
-
77952491139
-
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology
-
Jarboe L.R., et al. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J. Biomed. Biotechnol. 2010, 761042.
-
(2010)
J. Biomed. Biotechnol.
, pp. 761042
-
-
Jarboe, L.R.1
-
36
-
-
79952123299
-
Opportunities for yeast metabolic engineering: lessons from synthetic biology
-
Krivoruchko A., et al. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol. J. 2011, 6:262-276.
-
(2011)
Biotechnol. J.
, vol.6
, pp. 262-276
-
-
Krivoruchko, A.1
-
37
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 2008, 10:305-311.
-
(2008)
Metab. Eng.
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
-
38
-
-
77954464041
-
Proteomics: a pragmatic perspective
-
Mallick P., Kuster B. Proteomics: a pragmatic perspective. Nat. Biotechnol. 2010, 28:695-709.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 695-709
-
-
Mallick, P.1
Kuster, B.2
-
39
-
-
34948817185
-
Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis
-
Gold N.D., Martin V.J.J. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J. Bacteriol. 2007, 189:6787-6795.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 6787-6795
-
-
Gold, N.D.1
Martin, V.J.J.2
-
40
-
-
76649097005
-
Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses
-
Blouzard J.-C., et al. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 2010, 10:541-554.
-
(2010)
Proteomics
, vol.10
, pp. 541-554
-
-
Blouzard, J.-C.1
-
41
-
-
78751495229
-
Proteome-wide systems analysis of a cellulosic biofuel-producing microbe
-
Tolonen A.C., et al. Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol. Syst. Biol. 2011, 7:461.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 461
-
-
Tolonen, A.C.1
-
42
-
-
33646591842
-
Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40
-
Ekborg N.A., et al. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environ. Microbiol. 2006, 72:3396-3405.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 3396-3405
-
-
Ekborg, N.A.1
-
43
-
-
33744771680
-
Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T
-
Taylor L.E., et al. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J. Bacteriol. 2006, 188:3849-3861.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 3849-3861
-
-
Taylor, L.E.1
-
44
-
-
60649098811
-
Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains
-
Herpoël-Gimbert I., et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels 2008, 1:18.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 18
-
-
Herpoël-Gimbert, I.1
-
45
-
-
0037439184
-
Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures
-
Zhang Y., Lynd L.R. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Anal. Chem. 2003, 75:219-227.
-
(2003)
Anal. Chem.
, vol.75
, pp. 219-227
-
-
Zhang, Y.1
Lynd, L.R.2
-
46
-
-
11144320832
-
Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum
-
Zhang Y.-H.P., Lynd L.R. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 2005, 187:99-106.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 99-106
-
-
Zhang, Y.-H.P.1
Lynd, L.R.2
-
47
-
-
78649889018
-
Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors
-
Nataf Y., et al. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18646-18651.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18646-18651
-
-
Nataf, Y.1
-
48
-
-
79951497471
-
Differential regulation of the cellulase transcription factors XYR1, ACE2 and ACE1 in high and low cellulase producing strains of Trichoderma reesei
-
Portnoy T., et al. Differential regulation of the cellulase transcription factors XYR1, ACE2 and ACE1 in high and low cellulase producing strains of Trichoderma reesei. Eukaryot. Cell 2010, 10:262-271.
-
(2010)
Eukaryot. Cell
, vol.10
, pp. 262-271
-
-
Portnoy, T.1
-
49
-
-
77950225539
-
Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca
-
Deng Y., Fong S.S. Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl. Environ. Microbiol. 2010, 76:2098-2106.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 2098-2106
-
-
Deng, Y.1
Fong, S.S.2
-
50
-
-
76649098306
-
Influence of culture aeration on the cellulase activity of Thermobifida fusca
-
Deng Y., Fong S.S. Influence of culture aeration on the cellulase activity of Thermobifida fusca. App. Microbiol. Biotechnol. 2010, 85:965-974.
-
(2010)
App. Microbiol. Biotechnol.
, vol.85
, pp. 965-974
-
-
Deng, Y.1
Fong, S.S.2
-
51
-
-
77950867848
-
Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei
-
Castellanos F., et al. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet. Biol. 2010, 47:468-476.
-
(2010)
Fungal Genet. Biol.
, vol.47
, pp. 468-476
-
-
Castellanos, F.1
-
52
-
-
78649725191
-
Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina)
-
Gyalai-Korpos M., et al. Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC Res. Notes 2010, 3:330.
-
(2010)
BMC Res. Notes
, vol.3
, pp. 330
-
-
Gyalai-Korpos, M.1
-
53
-
-
78650824797
-
Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p
-
Ding J., et al. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p. J. Microbiol. Biotechnol. 2010, 20:1630-1636.
-
(2010)
J. Microbiol. Biotechnol.
, vol.20
, pp. 1630-1636
-
-
Ding, J.1
-
54
-
-
79958733620
-
Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability
-
Zhu L., et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab. Eng. 2011, 13:426-434.
-
(2011)
Metab. Eng.
, vol.13
, pp. 426-434
-
-
Zhu, L.1
-
55
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T., et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Factories 2011, 10:2.
-
(2011)
Microb. Cell Factories
, vol.10
, pp. 2
-
-
Hasunuma, T.1
-
56
-
-
67650685558
-
An integrated network approach identifies the isobutanol response network of Escherichia coli
-
Brynildsen M.P., Liao J.C. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 2009, 5:277.
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 277
-
-
Brynildsen, M.P.1
Liao, J.C.2
-
57
-
-
78650647970
-
Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
-
Atsumi S., et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol. 2010, 6:449.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 449
-
-
Atsumi, S.1
-
58
-
-
79953069562
-
Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli
-
Minty J.J., et al. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb. Cell Factories 2011, 10:18.
-
(2011)
Microb. Cell Factories
, vol.10
, pp. 18
-
-
Minty, J.J.1
-
59
-
-
9544253891
-
Genome-scale models of microbial cells: evaluating the consequences of constraints
-
Price N.D., et al. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004, 2:886-897.
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 886-897
-
-
Price, N.D.1
-
60
-
-
77956696072
-
High-throughput generation, optimization and analysis of genome-scale metabolic models
-
Henry C.S., et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010, 28:969-974.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 969-974
-
-
Henry, C.S.1
-
61
-
-
33947276100
-
Metabolic modeling of a mutualistic microbial community
-
Stolyar S., et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 2007, 3:92.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 92
-
-
Stolyar, S.1
-
62
-
-
0036708443
-
Dynamic flux balance analysis of diauxic growth in Escherichia coli
-
Mahadevan R., et al. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 2002, 83:1331-1340.
-
(2002)
Biophys. J.
, vol.83
, pp. 1331-1340
-
-
Mahadevan, R.1
-
63
-
-
78650215306
-
Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures
-
Hanly T.J., Henson M.A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 2010, 108:376-385.
-
(2010)
Biotechnol. Bioeng.
, vol.108
, pp. 376-385
-
-
Hanly, T.J.1
Henson, M.A.2
-
64
-
-
77954724818
-
Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
-
Salimi F., et al. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 2010, 5:726-738.
-
(2010)
Biotechnol. J.
, vol.5
, pp. 726-738
-
-
Salimi, F.1
-
65
-
-
0037342537
-
The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
-
Hucka M., et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 9:524-531.
-
(2003)
Bioinformatics
, vol.9
, pp. 524-531
-
-
Hucka, M.1
-
66
-
-
79957839340
-
Adaptive informatics for multifactorial and high-content biological data
-
Millard B.L., et al. Adaptive informatics for multifactorial and high-content biological data. Nat. Methods 2011, 8:487-493.
-
(2011)
Nat. Methods
, vol.8
, pp. 487-493
-
-
Millard, B.L.1
-
67
-
-
46949110597
-
Setting the standard in synthetic biology
-
Arkin A. Setting the standard in synthetic biology. Nat. Biotechnol. 2008, 26:771-774.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 771-774
-
-
Arkin, A.1
-
68
-
-
77953584054
-
Creation of a bacterial cell controlled by a chemically synthesized genome
-
Gibson D.G., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329:52-56.
-
(2010)
Science
, vol.329
, pp. 52-56
-
-
Gibson, D.G.1
-
69
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460:894-898.
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
70
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
-
Feist A.M., et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 2007, 3:121.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 121
-
-
Feist, A.M.1
-
71
-
-
3843128481
-
Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
-
Duarte N.C., et al. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14:1298-1309.
-
(2004)
Genome Res.
, vol.14
, pp. 1298-1309
-
-
Duarte, N.C.1
-
72
-
-
69249154275
-
Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum
-
Shinfuku Y., et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb. Cell Factories 2009, 8:43.
-
(2009)
Microb. Cell Factories
, vol.8
, pp. 43
-
-
Shinfuku, Y.1
-
73
-
-
78650389698
-
Constraint-based modeling analysis of the metabolism of two Pelobacter species
-
Sun J., et al. Constraint-based modeling analysis of the metabolism of two Pelobacter species. BMC Syst. Biol. 2010, 4:174.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 174
-
-
Sun, J.1
-
74
-
-
78751658356
-
Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis
-
Widiastuti H., et al. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol. Bioeng. 2010, 108:655-665.
-
(2010)
Biotechnol. Bioeng.
, vol.108
, pp. 655-665
-
-
Widiastuti, H.1
-
75
-
-
79952126110
-
Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803
-
Montagud A., et al. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol. J. 2011, 6:330-342.
-
(2011)
Biotechnol. J.
, vol.6
, pp. 330-342
-
-
Montagud, A.1
|