메뉴 건너뛰기




Volumn 19, Issue 10, 2011, Pages 516-524

Applications of systems biology towards microbial fuel production

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; BUTANOL; PETROLEUM;

EID: 80053293747     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2011.07.005     Document Type: Review
Times cited : (22)

References (75)
  • 1
    • 77949875923 scopus 로고    scopus 로고
    • Biomass-derived syngas fermentation into biofuels: opportunities and challenges
    • Munasinghe P.C., Khanal S.K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour. Technol. 2010, 101:5013-5022.
    • (2010) Bioresour. Technol. , vol.101 , pp. 5013-5022
    • Munasinghe, P.C.1    Khanal, S.K.2
  • 2
    • 0036714783 scopus 로고    scopus 로고
    • Microbial cellulose utilization: fundamentals and biotechnology
    • Lynd L.R., et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66:506-577.
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 506-577
    • Lynd, L.R.1
  • 3
    • 48649097223 scopus 로고    scopus 로고
    • Third generation biofuels via direct cellulose fermentation
    • Carere C.R., et al. Third generation biofuels via direct cellulose fermentation. Int. J. Mol. Sci. 2008, 9:1342-1360.
    • (2008) Int. J. Mol. Sci. , vol.9 , pp. 1342-1360
    • Carere, C.R.1
  • 4
    • 67649784905 scopus 로고    scopus 로고
    • Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose
    • Xu Q., et al. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 2009, 20:364-371.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 364-371
    • Xu, Q.1
  • 5
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • Higashide W., et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 2011, 77:2727-2733.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 2727-2733
    • Higashide, W.1
  • 6
    • 79954590746 scopus 로고    scopus 로고
    • Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production
    • Jin M., et al. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 2011, 108:1290-1297.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1290-1297
    • Jin, M.1
  • 7
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S., et al. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 2009, 27:1177-1180.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1177-1180
    • Atsumi, S.1
  • 8
    • 4344650394 scopus 로고    scopus 로고
    • Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil
    • Semêdo L.T.A.S., et al. Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil. Int. J. Syst. Evol. Microbiol. 2004, 54:1323-1328.
    • (2004) Int. J. Syst. Evol. Microbiol. , vol.54 , pp. 1323-1328
    • Semêdo, L.T.A.S.1
  • 9
    • 75949107568 scopus 로고    scopus 로고
    • Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree
    • Kim B.-C., et al. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J. Microbiol. (Seoul, Korea) 2009, 47:699-704.
    • (2009) J. Microbiol. (Seoul, Korea) , vol.47 , pp. 699-704
    • Kim, B.-C.1
  • 10
    • 0036865981 scopus 로고    scopus 로고
    • Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae)
    • Distel D.L., et al. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 2002, 52:2261-2269.
    • (2002) Int. J. Syst. Evol. Microbiol. , vol.52 , pp. 2261-2269
    • Distel, D.L.1
  • 11
    • 79955838819 scopus 로고    scopus 로고
    • Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a mid-Atlantic ridge hydrothermal vent
    • Podosokorskaya O.A., et al. Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a mid-Atlantic ridge hydrothermal vent. Int. J. Syst. Evol. Microbiol. 2011, 61:1160-1164.
    • (2011) Int. J. Syst. Evol. Microbiol. , vol.61 , pp. 1160-1164
    • Podosokorskaya, O.A.1
  • 12
    • 48549102338 scopus 로고    scopus 로고
    • Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs
    • Miroshnichenko M.L., et al. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int. J. Syst. Evol. Microbiol. 2008, 58:1492-1496.
    • (2008) Int. J. Syst. Evol. Microbiol. , vol.58 , pp. 1492-1496
    • Miroshnichenko, M.L.1
  • 13
    • 80053239702 scopus 로고    scopus 로고
    • Ruminococcus champanellensis sp. nov., a cellulose-degrading bacteria from the human gut microbiota
    • Chassard C., et al. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacteria from the human gut microbiota. Int. J. Syst. Evol. Microbiol. 2011, 10.1099/ijs.0.027375-0.
    • (2011) Int. J. Syst. Evol. Microbiol.
    • Chassard, C.1
  • 14
    • 79958236181 scopus 로고    scopus 로고
    • Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms
    • Chang L., et al. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. App. Microbiol. Biotechnol. 2011, 90:1933-1942.
    • (2011) App. Microbiol. Biotechnol. , vol.90 , pp. 1933-1942
    • Chang, L.1
  • 15
    • 77958598358 scopus 로고    scopus 로고
    • Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7
    • Bruant G., et al. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PloS ONE 2010, 5:e13033.
    • (2010) PloS ONE , vol.5
    • Bruant, G.1
  • 16
    • 79952536631 scopus 로고    scopus 로고
    • Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains
    • Araujo G.S., et al. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour. Technol. 2011, 102:5248-5250.
    • (2011) Bioresour. Technol. , vol.102 , pp. 5248-5250
    • Araujo, G.S.1
  • 17
    • 67449124798 scopus 로고    scopus 로고
    • Bioprospecting metagenomes: glycosyl hydrolases for converting biomass
    • Li L.-L., et al. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels 2009, 2:10.
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 10
    • Li, L.-L.1
  • 18
    • 77951134703 scopus 로고    scopus 로고
    • A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion
    • Sommer M.O.A., et al. A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol. Syst. Biol. 2010, 6:360.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 360
    • Sommer, M.O.A.1
  • 19
    • 77955118014 scopus 로고    scopus 로고
    • Microbial biosynthesis of alkanes
    • Schirmer A., et al. Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
    • (2010) Science , vol.329 , pp. 559-562
    • Schirmer, A.1
  • 20
    • 70149113922 scopus 로고    scopus 로고
    • Synthesis of methyl halides from biomass using engineered microbes
    • Bayer T.S., et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 2009, 131:6508-6515.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 6508-6515
    • Bayer, T.S.1
  • 21
    • 57449087447 scopus 로고    scopus 로고
    • Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis
    • Shi Z., Blaschek H.P. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl. Environ. Microbiol. 2008, 74:7709-7714.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 7709-7714
    • Shi, Z.1    Blaschek, H.P.2
  • 22
    • 79955125027 scopus 로고    scopus 로고
    • Small RNAs in the genus Clostridium
    • Chen Y., et al. Small RNAs in the genus Clostridium. mBio 2011, 2:e00340-e410.
    • (2011) mBio , vol.2
    • Chen, Y.1
  • 23
    • 51849142353 scopus 로고    scopus 로고
    • Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis
    • Senger R.S., Papoutsakis E.T. Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol. Bioeng. 2008, 101:1036-1052.
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 1036-1052
    • Senger, R.S.1    Papoutsakis, E.T.2
  • 24
    • 51849115840 scopus 로고    scopus 로고
    • Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network
    • Lee J., et al. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. App. Microbiol. Biotechnol. 2008, 80:849-862.
    • (2008) App. Microbiol. Biotechnol. , vol.80 , pp. 849-862
    • Lee, J.1
  • 25
    • 51849157931 scopus 로고    scopus 로고
    • Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems
    • Senger R.S., Papoutsakis E.T. Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol. Bioeng. 2008, 101:1053-1071.
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 1053-1071
    • Senger, R.S.1    Papoutsakis, E.T.2
  • 26
    • 70449575862 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production
    • Lee J.Y., et al. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol. J. 2009, 4:1432-1440.
    • (2009) Biotechnol. J. , vol.4 , pp. 1432-1440
    • Lee, J.Y.1
  • 27
    • 70349959827 scopus 로고    scopus 로고
    • Improved genome annotation for Zymomonas mobilis
    • Yang S., et al. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 2009, 27:893-894.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 893-894
    • Yang, S.1
  • 28
    • 61949193780 scopus 로고    scopus 로고
    • Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
    • Yang S., et al. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 2009, 10:34.
    • (2009) BMC Genomics , vol.10 , pp. 34
    • Yang, S.1
  • 29
    • 77953738245 scopus 로고    scopus 로고
    • Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
    • Yang S., et al. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10395-10400.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 10395-10400
    • Yang, S.1
  • 30
    • 77952774965 scopus 로고    scopus 로고
    • Exploring biodiversity for cellulosic biofuel production
    • Gowen C.M., Fong S.S. Exploring biodiversity for cellulosic biofuel production. Chem. Biodivers. 2010, 7:1086-1097.
    • (2010) Chem. Biodivers. , vol.7 , pp. 1086-1097
    • Gowen, C.M.1    Fong, S.S.2
  • 31
    • 67649214495 scopus 로고    scopus 로고
    • Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis
    • Raman B., et al. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 2009, 4:e5271.
    • (2009) PLoS ONE , vol.4
    • Raman, B.1
  • 32
    • 0020365678 scopus 로고
    • Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum
    • Herrero A.A., et al. Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim. Biophys. Acta 1982, 693:195-204.
    • (1982) Biochim. Biophys. Acta , vol.693 , pp. 195-204
    • Herrero, A.A.1
  • 33
    • 77954736119 scopus 로고    scopus 로고
    • Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
    • Roberts S.B., et al. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst. Biol. 2010, 4:31.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 31
    • Roberts, S.B.1
  • 34
    • 77954701087 scopus 로고    scopus 로고
    • Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum
    • Gowen C.M., Fong S.S. Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol. J. 2010, 5:759-767.
    • (2010) Biotechnol. J. , vol.5 , pp. 759-767
    • Gowen, C.M.1    Fong, S.S.2
  • 35
    • 77952491139 scopus 로고    scopus 로고
    • Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology
    • Jarboe L.R., et al. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J. Biomed. Biotechnol. 2010, 761042.
    • (2010) J. Biomed. Biotechnol. , pp. 761042
    • Jarboe, L.R.1
  • 36
    • 79952123299 scopus 로고    scopus 로고
    • Opportunities for yeast metabolic engineering: lessons from synthetic biology
    • Krivoruchko A., et al. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol. J. 2011, 6:262-276.
    • (2011) Biotechnol. J. , vol.6 , pp. 262-276
    • Krivoruchko, A.1
  • 37
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 2008, 10:305-311.
    • (2008) Metab. Eng. , vol.10 , pp. 305-311
    • Atsumi, S.1
  • 38
    • 77954464041 scopus 로고    scopus 로고
    • Proteomics: a pragmatic perspective
    • Mallick P., Kuster B. Proteomics: a pragmatic perspective. Nat. Biotechnol. 2010, 28:695-709.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 695-709
    • Mallick, P.1    Kuster, B.2
  • 39
    • 34948817185 scopus 로고    scopus 로고
    • Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis
    • Gold N.D., Martin V.J.J. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J. Bacteriol. 2007, 189:6787-6795.
    • (2007) J. Bacteriol. , vol.189 , pp. 6787-6795
    • Gold, N.D.1    Martin, V.J.J.2
  • 40
    • 76649097005 scopus 로고    scopus 로고
    • Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses
    • Blouzard J.-C., et al. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 2010, 10:541-554.
    • (2010) Proteomics , vol.10 , pp. 541-554
    • Blouzard, J.-C.1
  • 41
    • 78751495229 scopus 로고    scopus 로고
    • Proteome-wide systems analysis of a cellulosic biofuel-producing microbe
    • Tolonen A.C., et al. Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol. Syst. Biol. 2011, 7:461.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 461
    • Tolonen, A.C.1
  • 42
    • 33646591842 scopus 로고    scopus 로고
    • Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40
    • Ekborg N.A., et al. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environ. Microbiol. 2006, 72:3396-3405.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 3396-3405
    • Ekborg, N.A.1
  • 43
    • 33744771680 scopus 로고    scopus 로고
    • Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T
    • Taylor L.E., et al. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J. Bacteriol. 2006, 188:3849-3861.
    • (2006) J. Bacteriol. , vol.188 , pp. 3849-3861
    • Taylor, L.E.1
  • 44
    • 60649098811 scopus 로고    scopus 로고
    • Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains
    • Herpoël-Gimbert I., et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels 2008, 1:18.
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 18
    • Herpoël-Gimbert, I.1
  • 45
    • 0037439184 scopus 로고    scopus 로고
    • Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures
    • Zhang Y., Lynd L.R. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Anal. Chem. 2003, 75:219-227.
    • (2003) Anal. Chem. , vol.75 , pp. 219-227
    • Zhang, Y.1    Lynd, L.R.2
  • 46
    • 11144320832 scopus 로고    scopus 로고
    • Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum
    • Zhang Y.-H.P., Lynd L.R. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 2005, 187:99-106.
    • (2005) J. Bacteriol. , vol.187 , pp. 99-106
    • Zhang, Y.-H.P.1    Lynd, L.R.2
  • 47
    • 78649889018 scopus 로고    scopus 로고
    • Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors
    • Nataf Y., et al. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18646-18651.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 18646-18651
    • Nataf, Y.1
  • 48
    • 79951497471 scopus 로고    scopus 로고
    • Differential regulation of the cellulase transcription factors XYR1, ACE2 and ACE1 in high and low cellulase producing strains of Trichoderma reesei
    • Portnoy T., et al. Differential regulation of the cellulase transcription factors XYR1, ACE2 and ACE1 in high and low cellulase producing strains of Trichoderma reesei. Eukaryot. Cell 2010, 10:262-271.
    • (2010) Eukaryot. Cell , vol.10 , pp. 262-271
    • Portnoy, T.1
  • 49
    • 77950225539 scopus 로고    scopus 로고
    • Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca
    • Deng Y., Fong S.S. Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl. Environ. Microbiol. 2010, 76:2098-2106.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 2098-2106
    • Deng, Y.1    Fong, S.S.2
  • 50
    • 76649098306 scopus 로고    scopus 로고
    • Influence of culture aeration on the cellulase activity of Thermobifida fusca
    • Deng Y., Fong S.S. Influence of culture aeration on the cellulase activity of Thermobifida fusca. App. Microbiol. Biotechnol. 2010, 85:965-974.
    • (2010) App. Microbiol. Biotechnol. , vol.85 , pp. 965-974
    • Deng, Y.1    Fong, S.S.2
  • 51
    • 77950867848 scopus 로고    scopus 로고
    • Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei
    • Castellanos F., et al. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet. Biol. 2010, 47:468-476.
    • (2010) Fungal Genet. Biol. , vol.47 , pp. 468-476
    • Castellanos, F.1
  • 52
    • 78649725191 scopus 로고    scopus 로고
    • Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina)
    • Gyalai-Korpos M., et al. Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC Res. Notes 2010, 3:330.
    • (2010) BMC Res. Notes , vol.3 , pp. 330
    • Gyalai-Korpos, M.1
  • 53
    • 78650824797 scopus 로고    scopus 로고
    • Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p
    • Ding J., et al. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p. J. Microbiol. Biotechnol. 2010, 20:1630-1636.
    • (2010) J. Microbiol. Biotechnol. , vol.20 , pp. 1630-1636
    • Ding, J.1
  • 54
    • 79958733620 scopus 로고    scopus 로고
    • Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability
    • Zhu L., et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab. Eng. 2011, 13:426-434.
    • (2011) Metab. Eng. , vol.13 , pp. 426-434
    • Zhu, L.1
  • 55
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Factories 2011, 10:2.
    • (2011) Microb. Cell Factories , vol.10 , pp. 2
    • Hasunuma, T.1
  • 56
    • 67650685558 scopus 로고    scopus 로고
    • An integrated network approach identifies the isobutanol response network of Escherichia coli
    • Brynildsen M.P., Liao J.C. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 2009, 5:277.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 277
    • Brynildsen, M.P.1    Liao, J.C.2
  • 57
    • 78650647970 scopus 로고    scopus 로고
    • Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
    • Atsumi S., et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol. 2010, 6:449.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 449
    • Atsumi, S.1
  • 58
    • 79953069562 scopus 로고    scopus 로고
    • Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli
    • Minty J.J., et al. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb. Cell Factories 2011, 10:18.
    • (2011) Microb. Cell Factories , vol.10 , pp. 18
    • Minty, J.J.1
  • 59
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: evaluating the consequences of constraints
    • Price N.D., et al. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004, 2:886-897.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 886-897
    • Price, N.D.1
  • 60
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry C.S., et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010, 28:969-974.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 969-974
    • Henry, C.S.1
  • 61
    • 33947276100 scopus 로고    scopus 로고
    • Metabolic modeling of a mutualistic microbial community
    • Stolyar S., et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 2007, 3:92.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 92
    • Stolyar, S.1
  • 62
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R., et al. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 2002, 83:1331-1340.
    • (2002) Biophys. J. , vol.83 , pp. 1331-1340
    • Mahadevan, R.1
  • 63
    • 78650215306 scopus 로고    scopus 로고
    • Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures
    • Hanly T.J., Henson M.A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 2010, 108:376-385.
    • (2010) Biotechnol. Bioeng. , vol.108 , pp. 376-385
    • Hanly, T.J.1    Henson, M.A.2
  • 64
    • 77954724818 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
    • Salimi F., et al. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 2010, 5:726-738.
    • (2010) Biotechnol. J. , vol.5 , pp. 726-738
    • Salimi, F.1
  • 65
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • Hucka M., et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 9:524-531.
    • (2003) Bioinformatics , vol.9 , pp. 524-531
    • Hucka, M.1
  • 66
    • 79957839340 scopus 로고    scopus 로고
    • Adaptive informatics for multifactorial and high-content biological data
    • Millard B.L., et al. Adaptive informatics for multifactorial and high-content biological data. Nat. Methods 2011, 8:487-493.
    • (2011) Nat. Methods , vol.8 , pp. 487-493
    • Millard, B.L.1
  • 67
    • 46949110597 scopus 로고    scopus 로고
    • Setting the standard in synthetic biology
    • Arkin A. Setting the standard in synthetic biology. Nat. Biotechnol. 2008, 26:771-774.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 771-774
    • Arkin, A.1
  • 68
    • 77953584054 scopus 로고    scopus 로고
    • Creation of a bacterial cell controlled by a chemically synthesized genome
    • Gibson D.G., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329:52-56.
    • (2010) Science , vol.329 , pp. 52-56
    • Gibson, D.G.1
  • 69
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460:894-898.
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1
  • 70
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist A.M., et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 2007, 3:121.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 121
    • Feist, A.M.1
  • 71
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte N.C., et al. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14:1298-1309.
    • (2004) Genome Res. , vol.14 , pp. 1298-1309
    • Duarte, N.C.1
  • 72
    • 69249154275 scopus 로고    scopus 로고
    • Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum
    • Shinfuku Y., et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb. Cell Factories 2009, 8:43.
    • (2009) Microb. Cell Factories , vol.8 , pp. 43
    • Shinfuku, Y.1
  • 73
    • 78650389698 scopus 로고    scopus 로고
    • Constraint-based modeling analysis of the metabolism of two Pelobacter species
    • Sun J., et al. Constraint-based modeling analysis of the metabolism of two Pelobacter species. BMC Syst. Biol. 2010, 4:174.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 174
    • Sun, J.1
  • 74
    • 78751658356 scopus 로고    scopus 로고
    • Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis
    • Widiastuti H., et al. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol. Bioeng. 2010, 108:655-665.
    • (2010) Biotechnol. Bioeng. , vol.108 , pp. 655-665
    • Widiastuti, H.1
  • 75
    • 79952126110 scopus 로고    scopus 로고
    • Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803
    • Montagud A., et al. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol. J. 2011, 6:330-342.
    • (2011) Biotechnol. J. , vol.6 , pp. 330-342
    • Montagud, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.