-
1
-
-
84884085211
-
Optimization Algorithms on Matrix Manifolds
-
Princeton University Press New Jersey
-
[1] Absil, P., Mahony, R., Sepulchre, R., Optimization Algorithms on Matrix Manifolds. 2008, Princeton University Press, New Jersey.
-
(2008)
-
-
Absil, P.1
Mahony, R.2
Sepulchre, R.3
-
2
-
-
84866763119
-
A discrete regression method on manifolds and its application to data on SO(n)
-
[2] N. Boumal, P. Absil, A discrete regression method on manifolds and its application to data on SO(n), in: 18th IFAC World Congress, Milano, Italy, 2011.
-
(2011)
18th IFAC World Congress, Milano, Italy
-
-
Boumal, N.1
Absil, P.2
-
3
-
-
0004055894
-
Convex Optimization
-
Cambridge University Press Cambridge, UK
-
[3] Boyd, S., Vandenberghe, L., Convex Optimization. 2004, Cambridge University Press, Cambridge, UK.
-
(2004)
-
-
Boyd, S.1
Vandenberghe, L.2
-
4
-
-
0033266804
-
A nonlinear conjugate gradient method with a strong global convergence property
-
[4] Dai, Y., Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999), 177–182.
-
(1999)
SIAM J. Optim.
, vol.10
, pp. 177-182
-
-
Dai, Y.1
Yuan, Y.2
-
5
-
-
77951099553
-
Affine iterative closest point algorithm for point set registration
-
[5] Du, S., Zheng, N., Ying, S., Liu, J., Affine iterative closest point algorithm for point set registration. Pattern Recog. Lett. 31:9 (2010), 791–799.
-
(2010)
Pattern Recog. Lett.
, vol.31
, Issue.9
, pp. 791-799
-
-
Du, S.1
Zheng, N.2
Ying, S.3
Liu, J.4
-
6
-
-
84992487510
-
Probability iterative closest point algorithm for m-D point set registration with noise
-
In press
-
[6] Du, S., Liu, J., Zhang, C., Zhu, J., Li, K., Probability iterative closest point algorithm for m-D point set registration with noise. Neurocomputing, 2016 In press.
-
(2016)
Neurocomputing
-
-
Du, S.1
Liu, J.2
Zhang, C.3
Zhu, J.4
Li, K.5
-
7
-
-
77957862845
-
Scaling iterative closest point algorithm for registration of m-d point sets
-
[7] Du, S., Zheng, N., Xiong, L., Ying, S., Xue, J., Scaling iterative closest point algorithm for registration of m-d point sets. J. Vis. Commun. Image Represent. 21:5–6 (2010), 442–452.
-
(2010)
J. Vis. Commun. Image Represent.
, vol.21
, Issue.5-6
, pp. 442-452
-
-
Du, S.1
Zheng, N.2
Xiong, L.3
Ying, S.4
Xue, J.5
-
8
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
[8] Edelman, A., Arias, T., Smith, S., The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998), 303–353.
-
(1998)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 303-353
-
-
Edelman, A.1
Arias, T.2
Smith, S.3
-
9
-
-
77954446674
-
A closed-form solution to the problem of averaging over the Lie group of special orthogonal matrices
-
[9] S. Fiori, A closed-form solution to the problem of averaging over the Lie group of special orthogonal matrices, in: Lecture Notes on Computer Science, vol. 6063, 2010, pp. 185-192.
-
(2010)
Lecture Notes on Computer Science
, vol.6063
, pp. 185-192
-
-
Fiori, S.1
-
10
-
-
70450270685
-
An algorithm to compute averages on matrix Lie groups
-
[10] Fiori, S., Tanaka, T., An algorithm to compute averages on matrix Lie groups. IEEE Trans. Signal Process. 57 (2009), 4734–4743.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, pp. 4734-4743
-
-
Fiori, S.1
Tanaka, T.2
-
11
-
-
84967173692
-
Function minimization by conjugate gradients
-
[11] Fletcher, R., Reeves, C., Function minimization by conjugate gradients. Comput. J. 7 (1964), 149–154.
-
(1964)
Comput. J.
, vol.7
, pp. 149-154
-
-
Fletcher, R.1
Reeves, C.2
-
12
-
-
84865433958
-
3D object retrieval and recognition with hypergraph analysis
-
[12] Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q., 3D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21:9 (2012), 4290–4303.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.9
, pp. 4290-4303
-
-
Gao, Y.1
Wang, M.2
Tao, D.3
Ji, R.4
Dai, Q.5
-
13
-
-
84871666061
-
Visual-textual joint relevance learning for tag-based social image search
-
[13] Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X., Visual-textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process. 22:1 (2013), 363–376.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.1
, pp. 363-376
-
-
Gao, Y.1
Wang, M.2
Zha, Z.3
Shen, J.4
Li, X.5
Wu, X.6
-
14
-
-
84901402355
-
Hyperspectral image classification through bilayer graph based learning
-
[14] Gao, Y., Ji, R., Cui, P., Dai, Q., Hua, G., Hyperspectral image classification through bilayer graph based learning. IEEE Trans. Image Process. 23:7 (2014), 2769–2778.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.7
, pp. 2769-2778
-
-
Gao, Y.1
Ji, R.2
Cui, P.3
Dai, Q.4
Hua, G.5
-
15
-
-
3242733388
-
1-close group actions
-
1-close group actions. Math. Z. 132:1 (1973), 11–20.
-
(1973)
Math. Z.
, vol.132
, Issue.1
, pp. 11-20
-
-
Grove, K.1
Karcher, H.2
-
16
-
-
33745276908
-
A survey of nonlinear conjugate gradient methods
-
[16] Hager, W., Zhang, H., A survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2 (2006), 35–58.
-
(2006)
Pacific J. Optim.
, vol.2
, pp. 35-58
-
-
Hager, W.1
Zhang, H.2
-
17
-
-
0003972403
-
Differential Geometry, Lie Groups and Symmetric Space
-
Academic Press, Providence Rhode Island
-
[17] Helgason, S., Differential Geometry, Lie Groups and Symmetric Space. 2001, Academic Press, Providence, Rhode Island.
-
(2001)
-
-
Helgason, S.1
-
18
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
[18] Hestenes, M., Stiefel, E., Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952), 409–436.
-
(1952)
J. Res. Natl. Bur. Stand.
, vol.49
, pp. 409-436
-
-
Hestenes, M.1
Stiefel, E.2
-
19
-
-
0004030727
-
Riemannian Geometry and Geometric Analysis
-
Springer-Verlag New York
-
[19] Jost, J., Riemannian Geometry and Geometric Analysis. 2002, Springer-Verlag, New York.
-
(2002)
-
-
Jost, J.1
-
20
-
-
84980162923
-
Riemannian center of mass and mollifier smoothing
-
[20] Kacher, H., Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30 (1977), 509–541.
-
(1977)
Commun. Pure Appl. Math.
, vol.30
, pp. 509-541
-
-
Kacher, H.1
-
21
-
-
84899531399
-
Karcher means and Karcher equations of positive definite operators
-
[21] Lawson, J., Lim, Y., Karcher means and Karcher equations of positive definite operators. Trans. AMS 1 (2014), 1–22.
-
(2014)
Trans. AMS
, vol.1
, pp. 1-22
-
-
Lawson, J.1
Lim, Y.2
-
22
-
-
84899434046
-
Differential geometric representations and algorithms for some pattern recognition and computer vision problems
-
[22] Li, R., Turaga, P., Srivastava, A., Chellappa, R., Differential geometric representations and algorithms for some pattern recognition and computer vision problems. Pattern Recognit. Lett. 43 (2014), 3–11.
-
(2014)
Pattern Recognit. Lett.
, vol.43
, pp. 3-11
-
-
Li, R.1
Turaga, P.2
Srivastava, A.3
Chellappa, R.4
-
23
-
-
59749092732
-
Stability of an elastic rod buckling into a soft wall
-
[23] Manning, R., Bulman, G., Stability of an elastic rod buckling into a soft wall. Proc. R. Soc. A 461 (2005), 2423–2450.
-
(2005)
Proc. R. Soc. A
, vol.461
, pp. 2423-2450
-
-
Manning, R.1
Bulman, G.2
-
24
-
-
0036503069
-
Optimization algorithms exploiting unitary constraints
-
[24] Manton, J., Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50 (2002), 635–649.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, pp. 635-649
-
-
Manton, J.1
-
25
-
-
33747873784
-
A center (Karcher mean) approach to the joint approximate diagonalisation problem: the real symmetric case
-
[25] Manton, J., A center (Karcher mean) approach to the joint approximate diagonalisation problem: the real symmetric case. Digit. Signal Process. 16 (2006), 468–478.
-
(2006)
Digit. Signal Process.
, vol.16
, pp. 468-478
-
-
Manton, J.1
-
26
-
-
0037281553
-
Means and averaging in the group of rotations
-
[26] Moakher, M., Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24 (2002), 1–16.
-
(2002)
SIAM J. Matrix Anal. Appl.
, vol.24
, pp. 1-16
-
-
Moakher, M.1
-
27
-
-
79952694538
-
The geometric structures and instability of entropic dynamical models
-
[27] Peng, L., Sun, H., Sun, D., Yi, J., The geometric structures and instability of entropic dynamical models. Adv. Math. 227 (2011), 459–471.
-
(2011)
Adv. Math.
, vol.227
, pp. 459-471
-
-
Peng, L.1
Sun, H.2
Sun, D.3
Yi, J.4
-
28
-
-
21744446767
-
Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras
-
[28] Plumbley, B., Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras. Neurocomputing 67 (2005), 161–197.
-
(2005)
Neurocomputing
, vol.67
, pp. 161-197
-
-
Plumbley, B.1
-
29
-
-
0001903222
-
Note sur la convergence de directions conjugées
-
[29] Polak, E., Ribière, G., Note sur la convergence de directions conjugées. Rev. Fr. Informat. Rech. Oper. 16 (1969), 35–43.
-
(1969)
Rev. Fr. Informat. Rech. Oper.
, vol.16
, pp. 35-43
-
-
Polak, E.1
Ribière, G.2
-
30
-
-
0001931644
-
The conjugate gradient method in extreme problems
-
[30] Polyak, B., The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969), 94–112.
-
(1969)
USSR Comp. Math. Math. Phys.
, vol.9
, pp. 94-112
-
-
Polyak, B.1
-
31
-
-
84992526461
-
-
Geometric optimization methods for adaptive filtering (Ph.D. thesis), Division of Applied Science, Harvard University, Cambridge
-
[31] S. Smith, Geometric optimization methods for adaptive filtering (Ph.D. thesis), Division of Applied Science, Harvard University, Cambridge, 1993.
-
(1993)
-
-
Smith, S.1
|