메뉴 건너뛰기




Volumn 47, Issue 10, 2017, Pages 2754-2767

Dynamic delay predictions for large-scale railway networks: Deep and shallow extreme learning machines tuned via thresholdout

Author keywords

Apache Spark; big data; deep extreme learning machine (DELM); delay prediction; dynamic varying systems; in memory computing; intelligent transportation systems; model selection (MS); railway; shallow extreme learning machine (SELM); thresholdout

Indexed keywords

DATA HANDLING; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; RAILROAD TRANSPORTATION; RAILROADS; REGRESSION ANALYSIS; TRANSPORTATION;

EID: 85019023963     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2017.2693209     Document Type: Article
Times cited : (98)

References (110)
  • 1
    • 84939158929 scopus 로고    scopus 로고
    • Condition based maintenance in railway transportation systems based on big data streaming analysis
    • San Francisco, CA, USA
    • E. Fumeo, L. Oneto, and D. Anguita, "Condition based maintenance in railway transportation systems based on big data streaming analysis," in Proc. INNS Big Data Conf., San Francisco, CA, USA, 2015, pp. 437-446
    • (2015) Proc. INNS Big Data Conf , pp. 437-446
    • Fumeo, E.1    Oneto, L.2    Anguita, D.3
  • 2
    • 84893290822 scopus 로고    scopus 로고
    • Alarm prediction in large-scale sensor networks-A case study in railroad
    • Silicon Valley, CA, USA
    • H. Li, B. Qian, D. Parikh, and A. Hampapur, "Alarm prediction in large-scale sensor networks-A case study in railroad," in Proc. IEEE Int. Conf. Big Data, Silicon Valley, CA, USA, 2013, pp. 7-14
    • (2013) Proc. IEEE Int. Conf. Big Data , pp. 7-14
    • Li, H.1    Qian, B.2    Parikh, D.3    Hampapur, A.4
  • 3
    • 84904358786 scopus 로고    scopus 로고
    • Improving rail network velocity: A machine learning approach to predictive maintenance
    • Aug
    • H. Li et al., "Improving rail network velocity: A machine learning approach to predictive maintenance," Transp. Res. C Emerg. Technol., vol. 45, pp. 17-26, Aug. 2014
    • (2014) Transp. Res. C Emerg. Technol , vol.45 , pp. 17-26
    • Li, H.1
  • 4
    • 84896495074 scopus 로고    scopus 로고
    • Automatic fastener classification and defect detection in vision-based railway inspection systems
    • Apr
    • H. Feng et al., "Automatic fastener classification and defect detection in vision-based railway inspection systems," IEEE Trans. Instrum. Meas., vol. 63, no. 4, pp. 877-888, Apr. 2014
    • (2014) IEEE Trans. Instrum. Meas , vol.63 , Issue.4 , pp. 877-888
    • Feng, H.1
  • 7
    • 84902076983 scopus 로고    scopus 로고
    • Energy-efficient locomotive operation for Chinese mainline railways by fuzzy predictive control
    • Jun
    • Y. Bai, T. K. Ho, B. Mao, Y. Ding, and S. Chen, "Energy-efficient locomotive operation for Chinese mainline railways by fuzzy predictive control," IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 938-948, Jun. 2014
    • (2014) IEEE Trans. Intell. Transp. Syst , vol.15 , Issue.3 , pp. 938-948
    • Bai, Y.1    Ho, T.K.2    Mao, B.3    Ding, Y.4    Chen, S.5
  • 8
    • 84933500364 scopus 로고    scopus 로고
    • Application of big data technology in marketing decisions for railway freight
    • Shanghai, China
    • X. Zhang and D. Gong, "Application of big data technology in marketing decisions for railway freight," in Proc. ICLEM Syst. Plan. Supply Chain Manag. Safety, Shanghai, China, 2014, pp. 1136-1141
    • (2014) Proc. ICLEM Syst. Plan. Supply Chain Manag. Safety , pp. 1136-1141
    • Zhang, X.1    Gong, D.2
  • 9
    • 84988214367 scopus 로고    scopus 로고
    • Applications of linked data in the rail domain
    • Washington, DC, USA
    • C. Morris, J. Easton, and C. Roberts, "Applications of linked data in the rail domain," in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, 2014, pp. 35-41
    • (2014) Proc. IEEE Int. Conf. Big Data , pp. 35-41
    • Morris, C.1    Easton, J.2    Roberts, C.3
  • 10
    • 84921800343 scopus 로고    scopus 로고
    • Ontology-driven data integration for railway asset monitoring applications
    • Washington, DC, USA
    • J. Tutcher, "Ontology-driven data integration for railway asset monitoring applications," in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, 2014, pp. 85-95
    • (2014) Proc. IEEE Int. Conf. Big Data , pp. 85-95
    • Tutcher, J.1
  • 12
    • 84938841163 scopus 로고    scopus 로고
    • Efficient multipattern event processing over high-speed train data streams
    • Aug
    • M. Ma, P. Wang, C.-H. Chu, and L. Liu, "Efficient multipattern event processing over high-speed train data streams," IEEE Internet Things J., vol. 2, no. 4, pp. 295-309, Aug. 2015
    • (2015) IEEE Internet Things J , vol.2 , Issue.4 , pp. 295-309
    • Ma, M.1    Wang, P.2    Chu, C.-H.3    Liu, L.4
  • 13
    • 84950286465 scopus 로고    scopus 로고
    • Prior LDA and SVM based fault diagnosis of vehicle on-board equipment for high speed railway
    • F. Wang, T.-H. Xu, Y. Zhao, and Y.-R. Huang, "Prior LDA and SVM based fault diagnosis of vehicle on-board equipment for high speed railway," in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2015, pp. 818-823
    • (2015) Proc. IEEE Int. Conf. Intell. Transp. Syst , pp. 818-823
    • Wang, F.1    Xu, T.-H.2    Zhao, Y.3    Huang, Y.-R.4
  • 14
    • 84937138037 scopus 로고    scopus 로고
    • Text mining based fault diagnosis of vehicle on-board equipment for high speed railway
    • Qingdao, China
    • Y. Zhao, T.-H. Xu, and W. Hai-Feng, "Text mining based fault diagnosis of vehicle on-board equipment for high speed railway," in Proc. IEEE Int. Conf. Intell. Transp. Syst., Qingdao, China, 2014, pp. 900-905
    • (2014) Proc. IEEE Int. Conf. Intell. Transp. Syst , pp. 900-905
    • Zhao, Y.1    Xu, T.-H.2    Hai-Feng, W.3
  • 15
    • 84877277654 scopus 로고    scopus 로고
    • Fuzzy reliability-based traction control model for intelligent transportation systems
    • Jan
    • K. Noori and K. Jenab, "Fuzzy reliability-based traction control model for intelligent transportation systems," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 1, pp. 229-234, Jan. 2013
    • (2013) IEEE Trans. Syst., Man, Cybern., Syst , vol.43 , Issue.1 , pp. 229-234
    • Noori, K.1    Jenab, K.2
  • 16
    • 84969529170 scopus 로고    scopus 로고
    • An improved algorithm for high speed train's maintenance data mining based on MapReduce
    • Shanghai, China
    • Z. Bin and X. Wensheng, "An improved algorithm for high speed train's maintenance data mining based on MapReduce," in Proc. Int. Conf. Cloud Comput. Big Data, Shanghai, China, 2015, pp. 59-66
    • (2015) Proc. Int. Conf. Cloud Comput. Big Data , pp. 59-66
    • Bin, Z.1    Wensheng, X.2
  • 17
    • 84964466996 scopus 로고    scopus 로고
    • Research on storage and retrieval method of mass data for high-speed train
    • Shenzhen, China
    • B. Wang, F. Li, X. Hei, W. Ma, and L. Yu, "Research on storage and retrieval method of mass data for high-speed train," in Proc. 11th Int. Conf. Comput. Intell. Security, Shenzhen, China, 2015, pp. 474-477
    • (2015) Proc. 11th Int. Conf. Comput. Intell. Security , pp. 474-477
    • Wang, B.1    Li, F.2    Hei, X.3    Ma, W.4    Yu, L.5
  • 18
    • 84957030504 scopus 로고    scopus 로고
    • GeoSRM-Online geospatial safety risk model for the Gb rail network
    • Jan
    • J. Sadler et al., "GeoSRM-Online geospatial safety risk model for the GB rail network," IET Intell. Transp. Syst., vol. 10, no. 1, pp. 17-24, Jan. 2016
    • (2016) IET Intell. Transp. Syst , vol.10 , Issue.1 , pp. 17-24
    • Sadler, J.1
  • 20
    • 84911919620 scopus 로고    scopus 로고
    • K-medoids clustering based on MapReduce and optimal search of medoids
    • Vancouver, BC, Canada
    • Y.-T. Zhu, F.-Z. Wang, X.-H. Shan, and X.-Y. Lv, "K-medoids clustering based on MapReduce and optimal search of medoids," in Proc. Int. Conf. Comput. Sci. Educ., Vancouver, BC, Canada, 2014, pp. 573-577
    • (2014) Proc. Int. Conf. Comput. Sci. Educ , pp. 573-577
    • Zhu, Y.-T.1    Wang, F.-Z.2    Shan, X.-H.3    Lv, X.-Y.4
  • 23
    • 85014711488 scopus 로고    scopus 로고
    • A decision support system for optimizing operations at intermodal railroad terminals
    • Mar
    • M. Dotoli, N. Epicoco, M. Falagario, C. Seatzu, and B. Turchiano, "A decision support system for optimizing operations at intermodal railroad terminals," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 487-501, Mar. 2017
    • (2017) IEEE Trans. Syst., Man, Cybern., Syst , vol.47 , Issue.3 , pp. 487-501
    • Dotoli, M.1    Epicoco, N.2    Falagario, M.3    Seatzu, C.4    Turchiano, B.5
  • 24
    • 0032203702 scopus 로고    scopus 로고
    • A survey of optimization models for train routing and scheduling
    • J.-F. Cordeau, P. Toth, and D. Vigo, "A survey of optimization models for train routing and scheduling," Transp. Sci., vol. 32, no. 4, pp. 380-404, 1998
    • (1998) Transp. Sci , vol.32 , Issue.4 , pp. 380-404
    • Cordeau, J.-F.1    Toth, P.2    Vigo, D.3
  • 25
    • 84912041490 scopus 로고    scopus 로고
    • An iterative optimization framework for delay management and train scheduling
    • T. Dollevoet, F. Corman, A. D'Ariano, and D. Huisman, "An iterative optimization framework for delay management and train scheduling," Flexible Serv. Manuf. J., vol. 26, no. 4, pp. 490-515, 2014
    • (2014) Flexible Serv. Manuf. J , vol.26 , Issue.4 , pp. 490-515
    • Dollevoet, T.1    Corman, F.2    D'Ariano, A.3    Huisman, D.4
  • 26
    • 84906494922 scopus 로고    scopus 로고
    • Train rescheduling with stochastic recovery time: A new track-backup approach
    • Sep
    • X. Li, B. Shou, and D. Ralescu, "Train rescheduling with stochastic recovery time: A new track-backup approach," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 9, pp. 1216-1233, Sep. 2014
    • (2014) IEEE Trans. Syst., Man, Cybern., Syst , vol.44 , Issue.9 , pp. 1216-1233
    • Li, X.1    Shou, B.2    Ralescu, D.3
  • 29
    • 84904557716 scopus 로고    scopus 로고
    • Improving arrival time prediction of Thailand's passenger trains using historical travel times
    • Chon Buri, Thailand
    • S. Pongnumkul, T. Pechprasarn, N. Kunaseth, and K. Chaipah, "Improving arrival time prediction of Thailand's passenger trains using historical travel times," in Proc. Int. Joint Conf. Comput. Sci. Softw. Eng., Chon Buri, Thailand, 2014, pp. 307-312
    • (2014) Proc. Int. Joint Conf. Comput. Sci. Softw. Eng , pp. 307-312
    • Pongnumkul, S.1    Pechprasarn, T.2    Kunaseth, N.3    Chaipah, K.4
  • 30
    • 77952289414 scopus 로고    scopus 로고
    • A delay propagation algorithm for large-scale railway traffic networks
    • R. M. P. Goverde, "A delay propagation algorithm for large-scale railway traffic networks," Transp. Res. C Emerg. Technol., vol. 18, no. 3, pp. 269-287, 2010
    • (2010) Transp. Res. C Emerg. Technol , vol.18 , Issue.3 , pp. 269-287
    • Goverde, R.M.P.1
  • 32
    • 84928140832 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Transp. Plan., Delft Univ. Technol., Delft, The Netherlands
    • P. Kecman, Models for Predictive Railway Traffic Management, Ph.D. dissertation, Dept. Transp. Plan., Delft Univ. Technol., Delft, The Netherlands, 2014
    • (2014) Models for Predictive Railway Traffic Management
    • Kecman, P.1
  • 33
    • 84922525835 scopus 로고    scopus 로고
    • Online data-driven adaptive prediction of train event times
    • Feb
    • P. Kecman and R. M. P. Goverde, "Online data-driven adaptive prediction of train event times," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 465-474, Feb. 2015
    • (2015) IEEE Trans. Intell. Transp. Syst , vol.16 , Issue.1 , pp. 465-474
    • Kecman, P.1    Goverde, R.M.P.2
  • 34
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 36
    • 73949132376 scopus 로고    scopus 로고
    • Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay
    • Jan
    • H. Zhang, Z. Liu, G.-B. Huang, and Z. Wang, "Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 91-106, Jan. 2010
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.1 , pp. 91-106
    • Zhang, H.1    Liu, Z.2    Huang, G.-B.3    Wang, Z.4
  • 38
    • 40549140470 scopus 로고    scopus 로고
    • Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays
    • Feb
    • H. Zhang and Y. Wang, "Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 366-370, Feb. 2008
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.2 , pp. 366-370
    • Zhang, H.1    Wang, Y.2
  • 39
    • 84903269771 scopus 로고    scopus 로고
    • A comprehensive review of stability analysis of continuous-time recurrent neural networks
    • Jul
    • H. Zhang, Z. Wang, and D. Liu, "A comprehensive review of stability analysis of continuous-time recurrent neural networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1229-1262, Jul. 2014
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.7 , pp. 1229-1262
    • Zhang, H.1    Wang, Z.2    Liu, D.3
  • 40
    • 85021678628 scopus 로고    scopus 로고
    • Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems
    • to be published
    • H. Hong, W. Yu, G. Wen, and X. Yu, "Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2623634
    • IEEE Trans. Syst., Man, Cybern., Syst
    • Hong, H.1    Yu, W.2    Wen, G.3    Yu, X.4
  • 41
    • 84961830126 scopus 로고    scopus 로고
    • Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control
    • Jul
    • Q. Jiao, H. Modares, S. Xu, F. L. Lewis, and K. G. Vamvoudakis, "Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control," Automatica, vol. 69, pp. 24-34, Jul. 2016
    • (2016) Automatica , vol.69 , pp. 24-34
    • Jiao, Q.1    Modares, H.2    Xu, S.3    Lewis, F.L.4    Vamvoudakis, K.G.5
  • 42
    • 84919336343 scopus 로고    scopus 로고
    • Extreme learning machines
    • Nov./Dec
    • E. Cambria et al., "Extreme learning machines," IEEE Intell. Syst., vol. 28, no. 6, pp. 30-59, Nov./Dec. 2013
    • (2013) IEEE Intell. Syst , vol.28 , Issue.6 , pp. 30-59
    • Cambria, E.1
  • 43
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • Jan
    • G. Huang, G.-B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review," Neural Netw., vol. 61, pp. 32-48, Jan. 2015
    • (2015) Neural Netw , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.-B.2    Song, S.3    You, K.4
  • 44
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 45
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: Random neurons, random features and kernels
    • G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels," Cogn. Comput., vol. 6, no. 3, pp. 376-390, 2014
    • (2014) Cogn. Comput , vol.6 , Issue.3 , pp. 376-390
    • Huang, G.-B.1
  • 46
    • 84929711432 scopus 로고    scopus 로고
    • What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle
    • G.-B. Huang, "What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle," Cogn. Comput., vol. 7, no. 3, pp. 263-278, 2015
    • (2015) Cogn. Comput , vol.7 , Issue.3 , pp. 263-278
    • Huang, G.-B.1
  • 47
    • 0030817465 scopus 로고    scopus 로고
    • Circular backpropagation networks for classification
    • Jan
    • S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 84-97, Jan. 1997
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.1 , pp. 84-97
    • Ridella, S.1    Rovetta, S.2    Zunino, R.3
  • 48
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Cogn. Model., vol. 5, no. 3, p. 1, 1988
    • (1988) Cogn. Model , vol.5 , Issue.3 , pp. 1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 49
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, "Incremental extreme learning machine with fully complex hidden nodes," Neurocomputing, vol. 71, nos. 4-6, pp. 576-583, 2008
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 50
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul
    • G.-B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.K.3
  • 51
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • Budapest, Hungary
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., Budapest, Hungary, 2004, pp. 985-990
    • (2004) Proc. IEEE Int. Joint Conf. Neural Netw , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 52
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 53
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 54
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Helsinki, Finland
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. Int. Conf. Mach. Learn., Helsinki, Finland, 2008, pp. 1096-1103
    • (2008) Proc. Int. Conf. Mach. Learn , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 55
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 56
    • 84939797053 scopus 로고    scopus 로고
    • Stacked extreme learning machines
    • Sep
    • H. Zhou, G.-B. Huang, Z. Lin, H. Wang, and Y. C. Soh, "Stacked extreme learning machines," IEEE Trans. Cybern., vol. 45, no. 9, pp. 2013-2025, Sep. 2015
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.9 , pp. 2013-2025
    • Zhou, H.1    Huang, G.-B.2    Lin, Z.3    Wang, H.4    Soh, Y.C.5
  • 57
    • 84904092315 scopus 로고    scopus 로고
    • Representational learning with ELMs for big data
    • Nov./Dec
    • L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, "Representational learning with ELMs for big data," IEEE Intell. Syst., vol. 28, no. 6, pp. 31-34, Nov./Dec. 2013
    • (2013) IEEE Intell. Syst , vol.28 , Issue.6 , pp. 31-34
    • Kasun, L.L.C.1    Zhou, H.2    Huang, G.-B.3    Vong, C.M.4
  • 58
    • 84929000701 scopus 로고    scopus 로고
    • Extreme learning machine for multilayer perceptron
    • Apr
    • J. Tang, C. Deng, and G.-B. Huang, "Extreme learning machine for multilayer perceptron," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 809-821, Apr. 2016
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , Issue.4 , pp. 809-821
    • Tang, J.1    Deng, C.2    Huang, G.-B.3
  • 59
    • 84940703890 scopus 로고    scopus 로고
    • Deep extreme learning machines: Supervised autoencoding architecture for classification
    • Jan
    • M. D. Tissera and M. D. McDonnell, "Deep extreme learning machines: Supervised autoencoding architecture for classification," Neurocomputing, vol. 174, pp. 42-49, Jan. 2016
    • (2016) Neurocomputing , vol.174 , pp. 42-49
    • Tissera, M.D.1    McDonnell, M.D.2
  • 60
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • San Jose, CA, USA
    • M. Zaharia et al., "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing," in Proc. USENIX Conf. Netw. Syst. Design Implement., San Jose, CA, USA, 2012, p. 2
    • (2012) Proc. USENIX Conf. Netw. Syst. Design Implement , pp. 2
    • Zaharia, M.1
  • 61
    • 84979900694 scopus 로고    scopus 로고
    • MLlib: Machine learning in apache spark
    • X. Meng et al., "MLlib: Machine learning in apache spark," J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241, 2016
    • (2016) J. Mach. Learn. Res , vol.17 , Issue.1 , pp. 1235-1241
    • Meng, X.1
  • 62
    • 84939199851 scopus 로고    scopus 로고
    • Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf
    • J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, "Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf," Proc. Comput. Sci., vol. 53, pp. 121-130, 2015
    • (2015) Proc. Comput. Sci , vol.53 , pp. 121-130
    • Reyes-Ortiz, J.L.1    Oneto, L.2    Anguita, D.3
  • 63
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 65
    • 84962947859 scopus 로고    scopus 로고
    • Accessed on May 3, 2016
    • Google. (2016). Google Compute Engine. Accessed on May 3, 2016. [Online]. Available: https://cloud.google.com/compute
    • (2016) Google Compute Engine
  • 66
    • 85011298933 scopus 로고    scopus 로고
    • Advanced analytics for train delay prediction systems by including exogenous weather data
    • Montreal, QC, Canada
    • L. Oneto et al., "Advanced analytics for train delay prediction systems by including exogenous weather data," in Proc. IEEE Int. Conf. Data Sci. Adv. Anal., Montreal, QC, Canada, 2016, pp. 458-467
    • (2016) Proc. IEEE Int. Conf. Data Sci. Adv. Anal , pp. 458-467
    • Oneto, L.1
  • 67
    • 0036643049 scopus 로고    scopus 로고
    • Model selection and error estimation
    • P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation," Mach. Learn., vol. 48, nos. 1-3, pp. 85-113, 2002
    • (2002) Mach. Learn , vol.48 , Issue.1-3 , pp. 85-113
    • Bartlett, P.L.1    Boucheron, S.2    Lugosi, G.3
  • 68
  • 69
    • 52649131369 scopus 로고    scopus 로고
    • On the dangers of crossvalidation. An experimental evaluation
    • Atlanta, GA, USA
    • R. B. Rao, G. Fung, and R. Rosales, "On the dangers of crossvalidation. An experimental evaluation," in Proc. Int. Conf. Data Min., Atlanta, GA, USA, 2008, pp. 588-596
    • (2008) Proc. Int. Conf. Data Min , pp. 588-596
    • Rao, R.B.1    Fung, G.2    Rosales, R.3
  • 70
    • 84958747560 scopus 로고    scopus 로고
    • Preserving statistical validity in adaptive data analysis
    • Portland, OR, USA, Jun. 14-17
    • C. Dwork et al., "Preserving statistical validity in adaptive data analysis," in Proc. 47th Annu. ACM Symp. Theory Comput., Portland, OR, USA, Jun. 14-17, 2015, pp. 117-126
    • (2015) Proc. 47th Annu. ACM Symp. Theory Comput , pp. 117-126
    • Dwork, C.1
  • 71
    • 84965181547 scopus 로고    scopus 로고
    • Generalization in adaptive data analysis and holdout reuse
    • Montreal, QC, Canada
    • C. Dwork et al., "Generalization in adaptive data analysis and holdout reuse," in Proc. Neural Inf. Process. Syst., Montreal, QC, Canada, 2015, pp. 2341-2349
    • (2015) Proc. Neural Inf. Process. Syst , pp. 2341-2349
    • Dwork, C.1
  • 72
    • 84905991151 scopus 로고    scopus 로고
    • The algorithmic foundations of differential privacy
    • C. Dwork and A. Roth, "The algorithmic foundations of differential privacy," Found. Trends Theor. Comput. Sci., vol. 9, nos. 3-4, pp. 211-407, 2014
    • (2014) Found. Trends Theor. Comput. Sci , vol.9 , Issue.3-4 , pp. 211-407
    • Dwork, C.1    Roth, A.2
  • 73
    • 84958747560 scopus 로고    scopus 로고
    • Preserving statistical validity in adaptive data analysis
    • Portland, OR, USA
    • C. Dwork et al., "Preserving statistical validity in adaptive data analysis," in Proc. Annu. ACM Symp. Theory Comput., Portland, OR, USA, 2015, pp. 117-126
    • (2015) Proc. Annu. ACM Symp. Theory Comput , pp. 117-126
    • Dwork, C.1
  • 75
    • 84939199001 scopus 로고    scopus 로고
    • The reusable holdout: Preserving validity in adaptive data analysis
    • C. Dwork et al., "The reusable holdout: Preserving validity in adaptive data analysis," Science, vol. 349, no. 6248, pp. 636-638, 2015
    • (2015) Science , vol.349 , Issue.6248 , pp. 636-638
    • Dwork, C.1
  • 76
    • 85030121527 scopus 로고    scopus 로고
    • Accessed on May 3, 2016
    • Rete Ferroviaria Italiana. (2016). Gruppo Ferrovie Dello Stato Italiane. Accessed on May 3, 2016. [Online]. Available: http://www.rfi.it
    • (2016) Gruppo Ferrovie Dello Stato Italiane
  • 77
    • 85030090941 scopus 로고    scopus 로고
    • Regione liguria
    • Accessed on May 3, 2016
    • Regione Liguria. (2016). Weather Data of Regione Liguria. Accessed on May 3, 2016. [Online]. Available: http://www2.arpalombardia.it/ siti/arpalombardia/meteo/richiesta-dati-misurati/Pagine/RichiestaDati Misurati.aspx
    • (2016) Weather Data of Regione Liguria
  • 78
    • 85030099630 scopus 로고    scopus 로고
    • Regione lombardia
    • Accessed on 3 May 2016
    • Regione Lombardia. (2016). Weather Data of Regione Lombardia. Accessed on 3 May 2016. [Online]. Available: http:// www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/PubAccesso DatiMeteo.asp
    • (2016) Weather Data of Regione Lombardia
  • 83
    • 77953719971 scopus 로고    scopus 로고
    • Electric load forecasting based on locally weighted support vector regression
    • Jul
    • E. E. Elattar, J. Goulermas, and Q. H. Wu, "Electric load forecasting based on locally weighted support vector regression," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 4, pp. 438-447, Jul. 2010
    • (2010) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev , vol.40 , Issue.4 , pp. 438-447
    • Elattar, E.E.1    Goulermas, J.2    Wu, Q.H.3
  • 84
    • 84875050717 scopus 로고    scopus 로고
    • Energy load forecasting using empirical mode decomposition and support vector regression
    • Mar
    • L. Ghelardoni, A. Ghio, and D. Anguita, "Energy load forecasting using empirical mode decomposition and support vector regression," IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 549-556, Mar. 2013
    • (2013) IEEE Trans. Smart Grid , vol.4 , Issue.1 , pp. 549-556
    • Ghelardoni, L.1    Ghio, A.2    Anguita, D.3
  • 85
    • 84951000029 scopus 로고    scopus 로고
    • A learning scheme based on similarity functions for affective common-sense reasoning
    • Killarney, Ireland
    • F. Bisio, P. Gastaldo, R. Zunino, and E. Cambria, "A learning scheme based on similarity functions for affective common-sense reasoning," in Proc. Int. Joint Conf. Neural Netw., Killarney, Ireland, 2015, pp. 1-6
    • (2015) Proc. Int. Joint Conf. Neural Netw , pp. 1-6
    • Bisio, F.1    Gastaldo, P.2    Zunino, R.3    Cambria, E.4
  • 86
    • 84979680823 scopus 로고    scopus 로고
    • Statistical learning theory and ELM for big social data analysis
    • Aug
    • L. Oneto, F. Bisio, E. Cambria, and D. Anguita, "Statistical learning theory and ELM for big social data analysis," IEEE Comput. Intell. Mag., vol. 11, no. 3, pp. 45-55, Aug. 2016
    • (2016) IEEE Comput. Intell. Mag , vol.11 , Issue.3 , pp. 45-55
    • Oneto, L.1    Bisio, F.2    Cambria, E.3    Anguita, D.4
  • 87
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
    • Denver, CO, USA
    • R. Caruana, S. Lawrence, and L. Giles, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping," in Proc. Neural Inf. Process. Syst., Denver, CO, USA, 2001, pp. 381-387
    • (2001) Proc. Neural Inf. Process. Syst , pp. 381-387
    • Caruana, R.1    Lawrence, S.2    Giles, L.3
  • 88
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • L. Prechelt, "Automatic early stopping using cross validation: Quantifying the criteria," Neural Netw., vol. 11, no. 4, pp. 761-767, 1998
    • (1998) Neural Netw , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 89
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and outof-sample model selection and error estimation for support vector machines
    • Sep
    • D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and outof-sample model selection and error estimation for support vector machines," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1390-1406, Sep. 2012
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 91
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Nov
    • P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results," J. Mach. Learn. Res., vol. 3, pp. 463-482, Nov. 2002
    • (2002) J. Mach. Learn. Res , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 92
    • 26444592981 scopus 로고    scopus 로고
    • Local Rademacher complexities
    • P. L. Bartlett, O. Bousquet, and S. Mendelson, "Local Rademacher complexities," Ann. Statist., vol. 33, no. 4, pp. 1497-1537, 2005
    • (2005) Ann. Statist , vol.33 , Issue.4 , pp. 1497-1537
    • Bartlett, P.L.1    Bousquet, O.2    Mendelson, S.3
  • 93
    • 0029521676 scopus 로고
    • Sample compression, learnability, and the Vapnik-Chervonenkis dimension
    • S. Floyd and M. Warmuth, "Sample compression, learnability, and the Vapnik-Chervonenkis dimension," Mach. learn., vol. 21, no. 3, pp. 269-304, 1995
    • (1995) Mach. Learn , vol.21 , Issue.3 , pp. 269-304
    • Floyd, S.1    Warmuth, M.2
  • 94
    • 78650316174 scopus 로고    scopus 로고
    • Computable shell decomposition bounds
    • J. Langford and D. McAllester, "Computable shell decomposition bounds," J. Mach. Learn. Res., vol. 5, pp. 529-547, 2004
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 529-547
    • Langford, J.1    McAllester, D.2
  • 95
    • 0038368335 scopus 로고    scopus 로고
    • Stability and generalization
    • Mar
    • O. Bousquet and A. Elisseeff, "Stability and generalization," J. Mach. Learn. Res., vol. 2, pp. 499-526, Mar. 2002
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 96
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, "General conditions for predictivity in learning theory," Nature, vol. 428, no. 6981, pp. 419-422, 2004
    • (2004) Nature , vol.428 , Issue.6981 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 97
    • 84939779196 scopus 로고    scopus 로고
    • Fully empirical and data-dependent stability-based bounds
    • Sep
    • L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Fully empirical and data-dependent stability-based bounds," IEEE Trans. Cybern., vol. 45, no. 9, pp. 1913-1926, Sep. 2015
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.9 , pp. 1913-1926
    • Oneto, L.1    Ghio, A.2    Ridella, S.3    Anguita, D.4
  • 98
    • 84873278768 scopus 로고    scopus 로고
    • Tighter PAC-Bayes bounds through distribution-dependent priors
    • Feb
    • G. Lever, F. Laviolette, and F. Shawe-Taylor, "Tighter PAC-Bayes bounds through distribution-dependent priors," Theor. Comput. Sci., vol. 473, pp. 4-28, Feb. 2013
    • (2013) Theor. Comput. Sci , vol.473 , pp. 4-28
    • Lever, G.1    Laviolette, F.2    Shawe-Taylor, F.3
  • 100
    • 84938332952 scopus 로고    scopus 로고
    • Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm
    • P. Germain, A. Lacasse, M. Laviolette, M. Marchand, and J.-F. Roy, "Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm," J. Mach. Learn. Res., vol. 16, no. 1, pp. 787-860, 2015
    • (2015) J. Mach. Learn. Res , vol.16 , Issue.1 , pp. 787-860
    • Germain, P.1    Lacasse, A.2    Laviolette, M.3    Marchand, M.4    Roy, J.-F.5
  • 102
    • 0000794076 scopus 로고
    • Optimal decision rules in uncertain dichotomous choice situations
    • S. Nitzan and J. Paroush, "Optimal decision rules in uncertain dichotomous choice situations," Int. Econ. Rev., vol. 23, no. 2, pp. 289-297, 1982
    • (1982) Int. Econ. Rev , vol.23 , Issue.2 , pp. 289-297
    • Nitzan, S.1    Paroush, J.2
  • 104
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305, 2012
    • (2012) J. Mach. Learn. Res , vol.13 , Issue.1 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 105
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio, "Gradient-based optimization of hyperparameters," Neural Comput., vol. 12, no. 8, pp. 1889-1900, 2000
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 108
    • 0019550047 scopus 로고
    • Convergence of a random optimization method for constrained optimization problems
    • N. Baba, "Convergence of a random optimization method for constrained optimization problems," J. Optim. Theory Appl., vol. 33, no. 4, pp. 451-461, 1981
    • (1981) J. Optim. Theory Appl , vol.33 , Issue.4 , pp. 451-461
    • Baba, N.1
  • 109
    • 84969822502 scopus 로고    scopus 로고
    • The ladder: A reliable leaderboard for machine learning competitions
    • Lille, France
    • A. Blum and M. Hardt, "The ladder: A reliable leaderboard for machine learning competitions," in Proc. Int. Conf. Mach. Learn., Lille, France, 2015, pp. 1006-1014
    • (2015) Proc. Int. Conf. Mach. Learn , pp. 1006-1014
    • Blum, A.1    Hardt, M.2
  • 110
    • 84919969763 scopus 로고    scopus 로고
    • Preventing false discovery in interactive data analysis is hard
    • Philadelphia, PA, USA
    • M. Hardt and J. Ullman, "Preventing false discovery in interactive data analysis is hard," in Proc. Found. Comput. Sci., Philadelphia, PA, USA, 2014, pp. 454-463
    • (2014) Proc. Found. Comput. Sci , pp. 454-463
    • Hardt, M.1    Ullman, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.