-
1
-
-
84939158929
-
Condition based maintenance in railway transportation systems based on big data streaming analysis
-
San Francisco, CA, USA
-
E. Fumeo, L. Oneto, and D. Anguita, "Condition based maintenance in railway transportation systems based on big data streaming analysis," in Proc. INNS Big Data Conf., San Francisco, CA, USA, 2015, pp. 437-446
-
(2015)
Proc. INNS Big Data Conf
, pp. 437-446
-
-
Fumeo, E.1
Oneto, L.2
Anguita, D.3
-
2
-
-
84893290822
-
Alarm prediction in large-scale sensor networks-A case study in railroad
-
Silicon Valley, CA, USA
-
H. Li, B. Qian, D. Parikh, and A. Hampapur, "Alarm prediction in large-scale sensor networks-A case study in railroad," in Proc. IEEE Int. Conf. Big Data, Silicon Valley, CA, USA, 2013, pp. 7-14
-
(2013)
Proc. IEEE Int. Conf. Big Data
, pp. 7-14
-
-
Li, H.1
Qian, B.2
Parikh, D.3
Hampapur, A.4
-
3
-
-
84904358786
-
Improving rail network velocity: A machine learning approach to predictive maintenance
-
Aug
-
H. Li et al., "Improving rail network velocity: A machine learning approach to predictive maintenance," Transp. Res. C Emerg. Technol., vol. 45, pp. 17-26, Aug. 2014
-
(2014)
Transp. Res. C Emerg. Technol
, vol.45
, pp. 17-26
-
-
Li, H.1
-
4
-
-
84896495074
-
Automatic fastener classification and defect detection in vision-based railway inspection systems
-
Apr
-
H. Feng et al., "Automatic fastener classification and defect detection in vision-based railway inspection systems," IEEE Trans. Instrum. Meas., vol. 63, no. 4, pp. 877-888, Apr. 2014
-
(2014)
IEEE Trans. Instrum. Meas
, vol.63
, Issue.4
, pp. 877-888
-
-
Feng, H.1
-
5
-
-
84932638036
-
Railway fastener inspection by real-time machine vision
-
Jul
-
C. Aytekin, Y. Rezaeitabar, S. Dogru, and I. Ulusoy, "Railway fastener inspection by real-time machine vision," IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 7, pp. 1101-1107, Jul. 2015
-
(2015)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.45
, Issue.7
, pp. 1101-1107
-
-
Aytekin, C.1
Rezaeitabar, Y.2
Dogru, S.3
Ulusoy, I.4
-
6
-
-
84937148379
-
Graph methods for estimation of railway capacity
-
Qingdao, China
-
S. A. Branishtov, Y. A. Vershinin, D. A. Tumchenok, and A. M. Shirvanyan, "Graph methods for estimation of railway capacity," in Proc. IEEE 17th Int. Conf. Intell. Transp. Syst., Qingdao, China, 2014, pp. 525-530
-
(2014)
Proc. IEEE 17th Int. Conf. Intell. Transp. Syst
, pp. 525-530
-
-
Branishtov, S.A.1
Vershinin, Y.A.2
Tumchenok, D.A.3
Shirvanyan, A.M.4
-
7
-
-
84902076983
-
Energy-efficient locomotive operation for Chinese mainline railways by fuzzy predictive control
-
Jun
-
Y. Bai, T. K. Ho, B. Mao, Y. Ding, and S. Chen, "Energy-efficient locomotive operation for Chinese mainline railways by fuzzy predictive control," IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 938-948, Jun. 2014
-
(2014)
IEEE Trans. Intell. Transp. Syst
, vol.15
, Issue.3
, pp. 938-948
-
-
Bai, Y.1
Ho, T.K.2
Mao, B.3
Ding, Y.4
Chen, S.5
-
8
-
-
84933500364
-
Application of big data technology in marketing decisions for railway freight
-
Shanghai, China
-
X. Zhang and D. Gong, "Application of big data technology in marketing decisions for railway freight," in Proc. ICLEM Syst. Plan. Supply Chain Manag. Safety, Shanghai, China, 2014, pp. 1136-1141
-
(2014)
Proc. ICLEM Syst. Plan. Supply Chain Manag. Safety
, pp. 1136-1141
-
-
Zhang, X.1
Gong, D.2
-
9
-
-
84988214367
-
Applications of linked data in the rail domain
-
Washington, DC, USA
-
C. Morris, J. Easton, and C. Roberts, "Applications of linked data in the rail domain," in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, 2014, pp. 35-41
-
(2014)
Proc. IEEE Int. Conf. Big Data
, pp. 35-41
-
-
Morris, C.1
Easton, J.2
Roberts, C.3
-
10
-
-
84921800343
-
Ontology-driven data integration for railway asset monitoring applications
-
Washington, DC, USA
-
J. Tutcher, "Ontology-driven data integration for railway asset monitoring applications," in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, 2014, pp. 85-95
-
(2014)
Proc. IEEE Int. Conf. Big Data
, pp. 85-95
-
-
Tutcher, J.1
-
11
-
-
84964957383
-
Rail inspection meets big data: Methods and trends
-
Taipei, Taiwan
-
Q. Li, Z. Zhong, Z. Liang, and Y. Liang, "Rail inspection meets big data: Methods and trends," in Proc. Int. Conf. Netw. Based Inf. Syst., Taipei, Taiwan, 2015, pp. 302-308
-
(2015)
Proc. Int. Conf. Netw. Based Inf. Syst
, pp. 302-308
-
-
Li, Q.1
Zhong, Z.2
Liang, Z.3
Liang, Y.4
-
12
-
-
84938841163
-
Efficient multipattern event processing over high-speed train data streams
-
Aug
-
M. Ma, P. Wang, C.-H. Chu, and L. Liu, "Efficient multipattern event processing over high-speed train data streams," IEEE Internet Things J., vol. 2, no. 4, pp. 295-309, Aug. 2015
-
(2015)
IEEE Internet Things J
, vol.2
, Issue.4
, pp. 295-309
-
-
Ma, M.1
Wang, P.2
Chu, C.-H.3
Liu, L.4
-
13
-
-
84950286465
-
Prior LDA and SVM based fault diagnosis of vehicle on-board equipment for high speed railway
-
F. Wang, T.-H. Xu, Y. Zhao, and Y.-R. Huang, "Prior LDA and SVM based fault diagnosis of vehicle on-board equipment for high speed railway," in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2015, pp. 818-823
-
(2015)
Proc. IEEE Int. Conf. Intell. Transp. Syst
, pp. 818-823
-
-
Wang, F.1
Xu, T.-H.2
Zhao, Y.3
Huang, Y.-R.4
-
14
-
-
84937138037
-
Text mining based fault diagnosis of vehicle on-board equipment for high speed railway
-
Qingdao, China
-
Y. Zhao, T.-H. Xu, and W. Hai-Feng, "Text mining based fault diagnosis of vehicle on-board equipment for high speed railway," in Proc. IEEE Int. Conf. Intell. Transp. Syst., Qingdao, China, 2014, pp. 900-905
-
(2014)
Proc. IEEE Int. Conf. Intell. Transp. Syst
, pp. 900-905
-
-
Zhao, Y.1
Xu, T.-H.2
Hai-Feng, W.3
-
15
-
-
84877277654
-
Fuzzy reliability-based traction control model for intelligent transportation systems
-
Jan
-
K. Noori and K. Jenab, "Fuzzy reliability-based traction control model for intelligent transportation systems," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 1, pp. 229-234, Jan. 2013
-
(2013)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.43
, Issue.1
, pp. 229-234
-
-
Noori, K.1
Jenab, K.2
-
16
-
-
84969529170
-
An improved algorithm for high speed train's maintenance data mining based on MapReduce
-
Shanghai, China
-
Z. Bin and X. Wensheng, "An improved algorithm for high speed train's maintenance data mining based on MapReduce," in Proc. Int. Conf. Cloud Comput. Big Data, Shanghai, China, 2015, pp. 59-66
-
(2015)
Proc. Int. Conf. Cloud Comput. Big Data
, pp. 59-66
-
-
Bin, Z.1
Wensheng, X.2
-
17
-
-
84964466996
-
Research on storage and retrieval method of mass data for high-speed train
-
Shenzhen, China
-
B. Wang, F. Li, X. Hei, W. Ma, and L. Yu, "Research on storage and retrieval method of mass data for high-speed train," in Proc. 11th Int. Conf. Comput. Intell. Security, Shenzhen, China, 2015, pp. 474-477
-
(2015)
Proc. 11th Int. Conf. Comput. Intell. Security
, pp. 474-477
-
-
Wang, B.1
Li, F.2
Hei, X.3
Ma, W.4
Yu, L.5
-
18
-
-
84957030504
-
GeoSRM-Online geospatial safety risk model for the Gb rail network
-
Jan
-
J. Sadler et al., "GeoSRM-Online geospatial safety risk model for the GB rail network," IET Intell. Transp. Syst., vol. 10, no. 1, pp. 17-24, Jan. 2016
-
(2016)
IET Intell. Transp. Syst
, vol.10
, Issue.1
, pp. 17-24
-
-
Sadler, J.1
-
20
-
-
84911919620
-
K-medoids clustering based on MapReduce and optimal search of medoids
-
Vancouver, BC, Canada
-
Y.-T. Zhu, F.-Z. Wang, X.-H. Shan, and X.-Y. Lv, "K-medoids clustering based on MapReduce and optimal search of medoids," in Proc. Int. Conf. Comput. Sci. Educ., Vancouver, BC, Canada, 2014, pp. 573-577
-
(2014)
Proc. Int. Conf. Comput. Sci. Educ
, pp. 573-577
-
-
Zhu, Y.-T.1
Wang, F.-Z.2
Shan, X.-H.3
Lv, X.-Y.4
-
23
-
-
85014711488
-
A decision support system for optimizing operations at intermodal railroad terminals
-
Mar
-
M. Dotoli, N. Epicoco, M. Falagario, C. Seatzu, and B. Turchiano, "A decision support system for optimizing operations at intermodal railroad terminals," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 487-501, Mar. 2017
-
(2017)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.47
, Issue.3
, pp. 487-501
-
-
Dotoli, M.1
Epicoco, N.2
Falagario, M.3
Seatzu, C.4
Turchiano, B.5
-
24
-
-
0032203702
-
A survey of optimization models for train routing and scheduling
-
J.-F. Cordeau, P. Toth, and D. Vigo, "A survey of optimization models for train routing and scheduling," Transp. Sci., vol. 32, no. 4, pp. 380-404, 1998
-
(1998)
Transp. Sci
, vol.32
, Issue.4
, pp. 380-404
-
-
Cordeau, J.-F.1
Toth, P.2
Vigo, D.3
-
25
-
-
84912041490
-
An iterative optimization framework for delay management and train scheduling
-
T. Dollevoet, F. Corman, A. D'Ariano, and D. Huisman, "An iterative optimization framework for delay management and train scheduling," Flexible Serv. Manuf. J., vol. 26, no. 4, pp. 490-515, 2014
-
(2014)
Flexible Serv. Manuf. J
, vol.26
, Issue.4
, pp. 490-515
-
-
Dollevoet, T.1
Corman, F.2
D'Ariano, A.3
Huisman, D.4
-
26
-
-
84906494922
-
Train rescheduling with stochastic recovery time: A new track-backup approach
-
Sep
-
X. Li, B. Shou, and D. Ralescu, "Train rescheduling with stochastic recovery time: A new track-backup approach," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 9, pp. 1216-1233, Sep. 2014
-
(2014)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.44
, Issue.9
, pp. 1216-1233
-
-
Li, X.1
Shou, B.2
Ralescu, D.3
-
27
-
-
84875950222
-
A fuzzy Petri net model to estimate train delays
-
Apr
-
S. Milinkovic, M. Markovic, S. Veskovic, M. Ivic, and N. Pavlovic, "A fuzzy Petri net model to estimate train delays," Simulat. Model. Pract. Theory, vol. 33, pp. 144-157, Apr. 2013
-
(2013)
Simulat. Model. Pract. Theory
, vol.33
, pp. 144-157
-
-
Milinkovic, S.1
Markovic, M.2
Veskovic, S.3
Ivic, M.4
Pavlovic, N.5
-
28
-
-
84882974893
-
Stochastic delay prediction in large train networks
-
Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik
-
A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski, "Stochastic delay prediction in large train networks," in Proc. 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs-OpenAccess Series in Informatics, vol. 20. Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2011, pp. 100-111
-
(2011)
Proc. 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs-OpenAccess Series in Informatics
, vol.20
, pp. 100-111
-
-
Berger, A.1
Gebhardt, A.2
Müller-Hannemann, M.3
Ostrowski, M.4
-
29
-
-
84904557716
-
Improving arrival time prediction of Thailand's passenger trains using historical travel times
-
Chon Buri, Thailand
-
S. Pongnumkul, T. Pechprasarn, N. Kunaseth, and K. Chaipah, "Improving arrival time prediction of Thailand's passenger trains using historical travel times," in Proc. Int. Joint Conf. Comput. Sci. Softw. Eng., Chon Buri, Thailand, 2014, pp. 307-312
-
(2014)
Proc. Int. Joint Conf. Comput. Sci. Softw. Eng
, pp. 307-312
-
-
Pongnumkul, S.1
Pechprasarn, T.2
Kunaseth, N.3
Chaipah, K.4
-
30
-
-
77952289414
-
A delay propagation algorithm for large-scale railway traffic networks
-
R. M. P. Goverde, "A delay propagation algorithm for large-scale railway traffic networks," Transp. Res. C Emerg. Technol., vol. 18, no. 3, pp. 269-287, 2010
-
(2010)
Transp. Res. C Emerg. Technol
, vol.18
, Issue.3
, pp. 269-287
-
-
Goverde, R.M.P.1
-
31
-
-
78650431030
-
Online train delay recognition and running time prediction
-
Funchal, Portugal
-
I. A. Hansen, R. M. P. Goverde, and D. J. Van Der Meer, "Online train delay recognition and running time prediction," in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2010, Funchal, Portugal, pp. 1783-1788
-
(2010)
Proc. IEEE Int. Conf. Intell. Transp. Syst
, pp. 1783-1788
-
-
Hansen, I.A.1
Goverde, R.M.P.2
Vander Meer, D.J.3
-
32
-
-
84928140832
-
-
Ph.D. dissertation, Dept. Transp. Plan., Delft Univ. Technol., Delft, The Netherlands
-
P. Kecman, Models for Predictive Railway Traffic Management, Ph.D. dissertation, Dept. Transp. Plan., Delft Univ. Technol., Delft, The Netherlands, 2014
-
(2014)
Models for Predictive Railway Traffic Management
-
-
Kecman, P.1
-
33
-
-
84922525835
-
Online data-driven adaptive prediction of train event times
-
Feb
-
P. Kecman and R. M. P. Goverde, "Online data-driven adaptive prediction of train event times," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 465-474, Feb. 2015
-
(2015)
IEEE Trans. Intell. Transp. Syst
, vol.16
, Issue.1
, pp. 465-474
-
-
Kecman, P.1
Goverde, R.M.P.2
-
34
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Apr
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
36
-
-
73949132376
-
Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay
-
Jan
-
H. Zhang, Z. Liu, G.-B. Huang, and Z. Wang, "Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 91-106, Jan. 2010
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.1
, pp. 91-106
-
-
Zhang, H.1
Liu, Z.2
Huang, G.-B.3
Wang, Z.4
-
37
-
-
85030104528
-
Model-based reinforcement learning in differential graphical games
-
to be published
-
R. Kamalapurkar, J. R. Klotz, P. Walters, and W. E. Dixon, "Model-based reinforcement learning in differential graphical games," IEEE Trans. Control Netw. Syst., to be published, doi: 10.1109/TCNS.2016.2617622
-
IEEE Trans. Control Netw. Syst
-
-
Kamalapurkar, R.1
Klotz, J.R.2
Walters, P.3
Dixon, W.E.4
-
38
-
-
40549140470
-
Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays
-
Feb
-
H. Zhang and Y. Wang, "Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 366-370, Feb. 2008
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.2
, pp. 366-370
-
-
Zhang, H.1
Wang, Y.2
-
39
-
-
84903269771
-
A comprehensive review of stability analysis of continuous-time recurrent neural networks
-
Jul
-
H. Zhang, Z. Wang, and D. Liu, "A comprehensive review of stability analysis of continuous-time recurrent neural networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1229-1262, Jul. 2014
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst
, vol.25
, Issue.7
, pp. 1229-1262
-
-
Zhang, H.1
Wang, Z.2
Liu, D.3
-
40
-
-
85021678628
-
Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems
-
to be published
-
H. Hong, W. Yu, G. Wen, and X. Yu, "Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2623634
-
IEEE Trans. Syst., Man, Cybern., Syst
-
-
Hong, H.1
Yu, W.2
Wen, G.3
Yu, X.4
-
41
-
-
84961830126
-
Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control
-
Jul
-
Q. Jiao, H. Modares, S. Xu, F. L. Lewis, and K. G. Vamvoudakis, "Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control," Automatica, vol. 69, pp. 24-34, Jul. 2016
-
(2016)
Automatica
, vol.69
, pp. 24-34
-
-
Jiao, Q.1
Modares, H.2
Xu, S.3
Lewis, F.L.4
Vamvoudakis, K.G.5
-
42
-
-
84919336343
-
Extreme learning machines
-
Nov./Dec
-
E. Cambria et al., "Extreme learning machines," IEEE Intell. Syst., vol. 28, no. 6, pp. 30-59, Nov./Dec. 2013
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.6
, pp. 30-59
-
-
Cambria, E.1
-
43
-
-
84908682236
-
Trends in extreme learning machines: A review
-
Jan
-
G. Huang, G.-B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review," Neural Netw., vol. 61, pp. 32-48, Jan. 2015
-
(2015)
Neural Netw
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.-B.2
Song, S.3
You, K.4
-
44
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
45
-
-
84906948723
-
An insight into extreme learning machines: Random neurons, random features and kernels
-
G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels," Cogn. Comput., vol. 6, no. 3, pp. 376-390, 2014
-
(2014)
Cogn. Comput
, vol.6
, Issue.3
, pp. 376-390
-
-
Huang, G.-B.1
-
46
-
-
84929711432
-
What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle
-
G.-B. Huang, "What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle," Cogn. Comput., vol. 7, no. 3, pp. 263-278, 2015
-
(2015)
Cogn. Comput
, vol.7
, Issue.3
, pp. 263-278
-
-
Huang, G.-B.1
-
47
-
-
0030817465
-
Circular backpropagation networks for classification
-
Jan
-
S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 84-97, Jan. 1997
-
(1997)
IEEE Trans. Neural Netw
, vol.8
, Issue.1
, pp. 84-97
-
-
Ridella, S.1
Rovetta, S.2
Zunino, R.3
-
48
-
-
84921817164
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Cogn. Model., vol. 5, no. 3, p. 1, 1988
-
(1988)
Cogn. Model
, vol.5
, Issue.3
, pp. 1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
49
-
-
38649131505
-
Incremental extreme learning machine with fully complex hidden nodes
-
G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, "Incremental extreme learning machine with fully complex hidden nodes," Neurocomputing, vol. 71, nos. 4-6, pp. 576-583, 2008
-
(2008)
Neurocomputing
, vol.71
, Issue.4-6
, pp. 576-583
-
-
Huang, G.-B.1
Li, M.-B.2
Chen, L.3
Siew, C.-K.4
-
50
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Jul
-
G.-B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.K.3
-
51
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
Budapest, Hungary
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., Budapest, Hungary, 2004, pp. 985-990
-
(2004)
Proc. IEEE Int. Joint Conf. Neural Netw
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
52
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
-
(2009)
Found. Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
53
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
54
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Helsinki, Finland
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. Int. Conf. Mach. Learn., Helsinki, Finland, 2008, pp. 1096-1103
-
(2008)
Proc. Int. Conf. Mach. Learn
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
55
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
56
-
-
84939797053
-
Stacked extreme learning machines
-
Sep
-
H. Zhou, G.-B. Huang, Z. Lin, H. Wang, and Y. C. Soh, "Stacked extreme learning machines," IEEE Trans. Cybern., vol. 45, no. 9, pp. 2013-2025, Sep. 2015
-
(2015)
IEEE Trans. Cybern
, vol.45
, Issue.9
, pp. 2013-2025
-
-
Zhou, H.1
Huang, G.-B.2
Lin, Z.3
Wang, H.4
Soh, Y.C.5
-
57
-
-
84904092315
-
Representational learning with ELMs for big data
-
Nov./Dec
-
L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, "Representational learning with ELMs for big data," IEEE Intell. Syst., vol. 28, no. 6, pp. 31-34, Nov./Dec. 2013
-
(2013)
IEEE Intell. Syst
, vol.28
, Issue.6
, pp. 31-34
-
-
Kasun, L.L.C.1
Zhou, H.2
Huang, G.-B.3
Vong, C.M.4
-
58
-
-
84929000701
-
Extreme learning machine for multilayer perceptron
-
Apr
-
J. Tang, C. Deng, and G.-B. Huang, "Extreme learning machine for multilayer perceptron," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 809-821, Apr. 2016
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst
, vol.27
, Issue.4
, pp. 809-821
-
-
Tang, J.1
Deng, C.2
Huang, G.-B.3
-
59
-
-
84940703890
-
Deep extreme learning machines: Supervised autoencoding architecture for classification
-
Jan
-
M. D. Tissera and M. D. McDonnell, "Deep extreme learning machines: Supervised autoencoding architecture for classification," Neurocomputing, vol. 174, pp. 42-49, Jan. 2016
-
(2016)
Neurocomputing
, vol.174
, pp. 42-49
-
-
Tissera, M.D.1
McDonnell, M.D.2
-
60
-
-
85040175609
-
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
-
San Jose, CA, USA
-
M. Zaharia et al., "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing," in Proc. USENIX Conf. Netw. Syst. Design Implement., San Jose, CA, USA, 2012, p. 2
-
(2012)
Proc. USENIX Conf. Netw. Syst. Design Implement
, pp. 2
-
-
Zaharia, M.1
-
61
-
-
84979900694
-
MLlib: Machine learning in apache spark
-
X. Meng et al., "MLlib: Machine learning in apache spark," J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241, 2016
-
(2016)
J. Mach. Learn. Res
, vol.17
, Issue.1
, pp. 1235-1241
-
-
Meng, X.1
-
62
-
-
84939199851
-
Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf
-
J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, "Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf," Proc. Comput. Sci., vol. 53, pp. 121-130, 2015
-
(2015)
Proc. Comput. Sci
, vol.53
, pp. 121-130
-
-
Reyes-Ortiz, J.L.1
Oneto, L.2
Anguita, D.3
-
63
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
65
-
-
84962947859
-
-
Accessed on May 3, 2016
-
Google. (2016). Google Compute Engine. Accessed on May 3, 2016. [Online]. Available: https://cloud.google.com/compute
-
(2016)
Google Compute Engine
-
-
-
66
-
-
85011298933
-
Advanced analytics for train delay prediction systems by including exogenous weather data
-
Montreal, QC, Canada
-
L. Oneto et al., "Advanced analytics for train delay prediction systems by including exogenous weather data," in Proc. IEEE Int. Conf. Data Sci. Adv. Anal., Montreal, QC, Canada, 2016, pp. 458-467
-
(2016)
Proc. IEEE Int. Conf. Data Sci. Adv. Anal
, pp. 458-467
-
-
Oneto, L.1
-
67
-
-
0036643049
-
Model selection and error estimation
-
P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation," Mach. Learn., vol. 48, nos. 1-3, pp. 85-113, 2002
-
(2002)
Mach. Learn
, vol.48
, Issue.1-3
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
68
-
-
80054758777
-
In-sample model selection for support vector machines
-
San Jose, CA, USA
-
D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample model selection for support vector machines," in Proc. Int. Joint Conf. Neural Netw., San Jose, CA, USA, 2011, pp. 1154-1161
-
(2011)
Proc. Int. Joint Conf. Neural Netw
, pp. 1154-1161
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
69
-
-
52649131369
-
On the dangers of crossvalidation. An experimental evaluation
-
Atlanta, GA, USA
-
R. B. Rao, G. Fung, and R. Rosales, "On the dangers of crossvalidation. An experimental evaluation," in Proc. Int. Conf. Data Min., Atlanta, GA, USA, 2008, pp. 588-596
-
(2008)
Proc. Int. Conf. Data Min
, pp. 588-596
-
-
Rao, R.B.1
Fung, G.2
Rosales, R.3
-
70
-
-
84958747560
-
Preserving statistical validity in adaptive data analysis
-
Portland, OR, USA, Jun. 14-17
-
C. Dwork et al., "Preserving statistical validity in adaptive data analysis," in Proc. 47th Annu. ACM Symp. Theory Comput., Portland, OR, USA, Jun. 14-17, 2015, pp. 117-126
-
(2015)
Proc. 47th Annu. ACM Symp. Theory Comput
, pp. 117-126
-
-
Dwork, C.1
-
71
-
-
84965181547
-
Generalization in adaptive data analysis and holdout reuse
-
Montreal, QC, Canada
-
C. Dwork et al., "Generalization in adaptive data analysis and holdout reuse," in Proc. Neural Inf. Process. Syst., Montreal, QC, Canada, 2015, pp. 2341-2349
-
(2015)
Proc. Neural Inf. Process. Syst
, pp. 2341-2349
-
-
Dwork, C.1
-
72
-
-
84905991151
-
The algorithmic foundations of differential privacy
-
C. Dwork and A. Roth, "The algorithmic foundations of differential privacy," Found. Trends Theor. Comput. Sci., vol. 9, nos. 3-4, pp. 211-407, 2014
-
(2014)
Found. Trends Theor. Comput. Sci
, vol.9
, Issue.3-4
, pp. 211-407
-
-
Dwork, C.1
Roth, A.2
-
73
-
-
84958747560
-
Preserving statistical validity in adaptive data analysis
-
Portland, OR, USA
-
C. Dwork et al., "Preserving statistical validity in adaptive data analysis," in Proc. Annu. ACM Symp. Theory Comput., Portland, OR, USA, 2015, pp. 117-126
-
(2015)
Proc. Annu. ACM Symp. Theory Comput
, pp. 117-126
-
-
Dwork, C.1
-
75
-
-
84939199001
-
The reusable holdout: Preserving validity in adaptive data analysis
-
C. Dwork et al., "The reusable holdout: Preserving validity in adaptive data analysis," Science, vol. 349, no. 6248, pp. 636-638, 2015
-
(2015)
Science
, vol.349
, Issue.6248
, pp. 636-638
-
-
Dwork, C.1
-
76
-
-
85030121527
-
-
Accessed on May 3, 2016
-
Rete Ferroviaria Italiana. (2016). Gruppo Ferrovie Dello Stato Italiane. Accessed on May 3, 2016. [Online]. Available: http://www.rfi.it
-
(2016)
Gruppo Ferrovie Dello Stato Italiane
-
-
-
77
-
-
85030090941
-
Regione liguria
-
Accessed on May 3, 2016
-
Regione Liguria. (2016). Weather Data of Regione Liguria. Accessed on May 3, 2016. [Online]. Available: http://www2.arpalombardia.it/ siti/arpalombardia/meteo/richiesta-dati-misurati/Pagine/RichiestaDati Misurati.aspx
-
(2016)
Weather Data of Regione Liguria
-
-
-
78
-
-
85030099630
-
Regione lombardia
-
Accessed on 3 May 2016
-
Regione Lombardia. (2016). Weather Data of Regione Lombardia. Accessed on 3 May 2016. [Online]. Available: http:// www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/PubAccesso DatiMeteo.asp
-
(2016)
Weather Data of Regione Lombardia
-
-
-
80
-
-
35949021230
-
Geometry from a time series
-
N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, "Geometry from a time series," Phys. Rev. Lett., vol. 45, no. 9, pp. 712-716, 1980
-
(1980)
Phys. Rev. Lett
, vol.45
, Issue.9
, pp. 712-716
-
-
Packard, N.H.1
Crutchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
83
-
-
77953719971
-
Electric load forecasting based on locally weighted support vector regression
-
Jul
-
E. E. Elattar, J. Goulermas, and Q. H. Wu, "Electric load forecasting based on locally weighted support vector regression," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 4, pp. 438-447, Jul. 2010
-
(2010)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev
, vol.40
, Issue.4
, pp. 438-447
-
-
Elattar, E.E.1
Goulermas, J.2
Wu, Q.H.3
-
84
-
-
84875050717
-
Energy load forecasting using empirical mode decomposition and support vector regression
-
Mar
-
L. Ghelardoni, A. Ghio, and D. Anguita, "Energy load forecasting using empirical mode decomposition and support vector regression," IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 549-556, Mar. 2013
-
(2013)
IEEE Trans. Smart Grid
, vol.4
, Issue.1
, pp. 549-556
-
-
Ghelardoni, L.1
Ghio, A.2
Anguita, D.3
-
85
-
-
84951000029
-
A learning scheme based on similarity functions for affective common-sense reasoning
-
Killarney, Ireland
-
F. Bisio, P. Gastaldo, R. Zunino, and E. Cambria, "A learning scheme based on similarity functions for affective common-sense reasoning," in Proc. Int. Joint Conf. Neural Netw., Killarney, Ireland, 2015, pp. 1-6
-
(2015)
Proc. Int. Joint Conf. Neural Netw
, pp. 1-6
-
-
Bisio, F.1
Gastaldo, P.2
Zunino, R.3
Cambria, E.4
-
86
-
-
84979680823
-
Statistical learning theory and ELM for big social data analysis
-
Aug
-
L. Oneto, F. Bisio, E. Cambria, and D. Anguita, "Statistical learning theory and ELM for big social data analysis," IEEE Comput. Intell. Mag., vol. 11, no. 3, pp. 45-55, Aug. 2016
-
(2016)
IEEE Comput. Intell. Mag
, vol.11
, Issue.3
, pp. 45-55
-
-
Oneto, L.1
Bisio, F.2
Cambria, E.3
Anguita, D.4
-
87
-
-
84898932856
-
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
-
Denver, CO, USA
-
R. Caruana, S. Lawrence, and L. Giles, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping," in Proc. Neural Inf. Process. Syst., Denver, CO, USA, 2001, pp. 381-387
-
(2001)
Proc. Neural Inf. Process. Syst
, pp. 381-387
-
-
Caruana, R.1
Lawrence, S.2
Giles, L.3
-
88
-
-
0032099978
-
Automatic early stopping using cross validation: Quantifying the criteria
-
L. Prechelt, "Automatic early stopping using cross validation: Quantifying the criteria," Neural Netw., vol. 11, no. 4, pp. 761-767, 1998
-
(1998)
Neural Netw
, vol.11
, Issue.4
, pp. 761-767
-
-
Prechelt, L.1
-
89
-
-
84875879529
-
In-sample and outof-sample model selection and error estimation for support vector machines
-
Sep
-
D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and outof-sample model selection and error estimation for support vector machines," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1390-1406, Sep. 2012
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
91
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Nov
-
P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results," J. Mach. Learn. Res., vol. 3, pp. 463-482, Nov. 2002
-
(2002)
J. Mach. Learn. Res
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
92
-
-
26444592981
-
Local Rademacher complexities
-
P. L. Bartlett, O. Bousquet, and S. Mendelson, "Local Rademacher complexities," Ann. Statist., vol. 33, no. 4, pp. 1497-1537, 2005
-
(2005)
Ann. Statist
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
93
-
-
0029521676
-
Sample compression, learnability, and the Vapnik-Chervonenkis dimension
-
S. Floyd and M. Warmuth, "Sample compression, learnability, and the Vapnik-Chervonenkis dimension," Mach. learn., vol. 21, no. 3, pp. 269-304, 1995
-
(1995)
Mach. Learn
, vol.21
, Issue.3
, pp. 269-304
-
-
Floyd, S.1
Warmuth, M.2
-
94
-
-
78650316174
-
Computable shell decomposition bounds
-
J. Langford and D. McAllester, "Computable shell decomposition bounds," J. Mach. Learn. Res., vol. 5, pp. 529-547, 2004
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 529-547
-
-
Langford, J.1
McAllester, D.2
-
95
-
-
0038368335
-
Stability and generalization
-
Mar
-
O. Bousquet and A. Elisseeff, "Stability and generalization," J. Mach. Learn. Res., vol. 2, pp. 499-526, Mar. 2002
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 499-526
-
-
Bousquet, O.1
Elisseeff, A.2
-
96
-
-
1842420581
-
General conditions for predictivity in learning theory
-
T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, "General conditions for predictivity in learning theory," Nature, vol. 428, no. 6981, pp. 419-422, 2004
-
(2004)
Nature
, vol.428
, Issue.6981
, pp. 419-422
-
-
Poggio, T.1
Rifkin, R.2
Mukherjee, S.3
Niyogi, P.4
-
97
-
-
84939779196
-
Fully empirical and data-dependent stability-based bounds
-
Sep
-
L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Fully empirical and data-dependent stability-based bounds," IEEE Trans. Cybern., vol. 45, no. 9, pp. 1913-1926, Sep. 2015
-
(2015)
IEEE Trans. Cybern
, vol.45
, Issue.9
, pp. 1913-1926
-
-
Oneto, L.1
Ghio, A.2
Ridella, S.3
Anguita, D.4
-
98
-
-
84873278768
-
Tighter PAC-Bayes bounds through distribution-dependent priors
-
Feb
-
G. Lever, F. Laviolette, and F. Shawe-Taylor, "Tighter PAC-Bayes bounds through distribution-dependent priors," Theor. Comput. Sci., vol. 473, pp. 4-28, Feb. 2013
-
(2013)
Theor. Comput. Sci
, vol.473
, pp. 4-28
-
-
Lever, G.1
Laviolette, F.2
Shawe-Taylor, F.3
-
100
-
-
84938332952
-
Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm
-
P. Germain, A. Lacasse, M. Laviolette, M. Marchand, and J.-F. Roy, "Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm," J. Mach. Learn. Res., vol. 16, no. 1, pp. 787-860, 2015
-
(2015)
J. Mach. Learn. Res
, vol.16
, Issue.1
, pp. 787-860
-
-
Germain, P.1
Lacasse, A.2
Laviolette, M.3
Marchand, M.4
Roy, J.-F.5
-
101
-
-
85051874545
-
PAC-Bayesian bounds based on the Rényi divergence
-
L. Bégin, P. Germain, F. Laviolette, and J.-F. Roy, "PAC-Bayesian bounds based on the Rényi divergence," in Proc. Int. Conf. Artif. Intell. Statist., 2016, pp. 435-444
-
(2016)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 435-444
-
-
Bégin, L.1
Germain, P.2
Laviolette, F.3
Roy, J.-F.4
-
102
-
-
0000794076
-
Optimal decision rules in uncertain dichotomous choice situations
-
S. Nitzan and J. Paroush, "Optimal decision rules in uncertain dichotomous choice situations," Int. Econ. Rev., vol. 23, no. 2, pp. 289-297, 1982
-
(1982)
Int. Econ. Rev
, vol.23
, Issue.2
, pp. 289-297
-
-
Nitzan, S.1
Paroush, J.2
-
104
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305, 2012
-
(2012)
J. Mach. Learn. Res
, vol.13
, Issue.1
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
105
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio, "Gradient-based optimization of hyperparameters," Neural Comput., vol. 12, no. 8, pp. 1889-1900, 2000
-
(2000)
Neural Comput
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
106
-
-
84989338543
-
Gradient-based hyperparameter optimization through reversible learning
-
D. Maclaurin, D. Duvenaud, and R. P. Adams, "Gradient-based hyperparameter optimization through reversible learning," in Proc. Int. Conf. Mach. Learn., Lille, France, 2015, pp. 2113-2122
-
(2015)
Proc. Int. Conf. Mach. Learn., Lille, France
, pp. 2113-2122
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
107
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
Granada, Spain
-
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for hyper-parameter optimization," in Proc. Neural Inf. Process. Syst., Granada, Spain, 2011, pp. 2546-2554
-
(2011)
Proc. Neural Inf. Process. Syst
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
108
-
-
0019550047
-
Convergence of a random optimization method for constrained optimization problems
-
N. Baba, "Convergence of a random optimization method for constrained optimization problems," J. Optim. Theory Appl., vol. 33, no. 4, pp. 451-461, 1981
-
(1981)
J. Optim. Theory Appl
, vol.33
, Issue.4
, pp. 451-461
-
-
Baba, N.1
-
109
-
-
84969822502
-
The ladder: A reliable leaderboard for machine learning competitions
-
Lille, France
-
A. Blum and M. Hardt, "The ladder: A reliable leaderboard for machine learning competitions," in Proc. Int. Conf. Mach. Learn., Lille, France, 2015, pp. 1006-1014
-
(2015)
Proc. Int. Conf. Mach. Learn
, pp. 1006-1014
-
-
Blum, A.1
Hardt, M.2
-
110
-
-
84919969763
-
Preventing false discovery in interactive data analysis is hard
-
Philadelphia, PA, USA
-
M. Hardt and J. Ullman, "Preventing false discovery in interactive data analysis is hard," in Proc. Found. Comput. Sci., Philadelphia, PA, USA, 2014, pp. 454-463
-
(2014)
Proc. Found. Comput. Sci
, pp. 454-463
-
-
Hardt, M.1
Ullman, J.2
|