메뉴 건너뛰기




Volumn 9, Issue 3-4, 2013, Pages 211-487

The algorithmic foundations of differential privacy

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; MACHINE DESIGN; QUERY PROCESSING;

EID: 84905991151     PISSN: 1551305X     EISSN: 15513068     Source Type: Journal    
DOI: 10.1561/0400000042     Document Type: Article
Times cited : (6890)

References (85)
  • 1
    • 84871023469 scopus 로고    scopus 로고
    • The multiplicative weights update method: A meta-algorithm and applications
    • S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-algorithm and applications. Theory of Computing, 8(1):121-164, 2012.
    • (2012) Theory of Computing , vol.8 , Issue.1 , pp. 121-164
    • Arora, S.1    Hazan, E.2    Kale, S.3
  • 3
    • 77949617188 scopus 로고    scopus 로고
    • Bounds on the sample complexity for private learning and private data release
    • Springer
    • A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for private learning and private data release. In Theory of Cryptography, pages 437-454. Springer, 2010.
    • (2010) Theory of Cryptography , pp. 437-454
    • Beimel, A.1    Kasiviswanathan, S.P.2    Nissim, K.3
  • 8
    • 57049136138 scopus 로고    scopus 로고
    • A learning theory approach to noninteractive database privacy
    • Cynthia Dwork, editor. Association for Computing Machinery
    • A. Blum, K. Ligett, and A. Roth. A learning theory approach to noninteractive database privacy. In Cynthia Dwork, editor, Symposium on Theory of Computing, pages 609-618. Association for Computing Machinery, 2008.
    • (2008) Symposium on Theory of Computing , pp. 609-618
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 17
    • 84858307870 scopus 로고    scopus 로고
    • Lower bounds in differential privacy
    • A. De. Lower bounds in differential privacy. In Theory of Cryptography Conference, pages 321-338. 2012.
    • (2012) Theory of Cryptography Conference , pp. 321-338
    • De, A.1
  • 21
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486-503. 2006.
    • (2006) EUROCRYPT , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 25
    • 79959952201 scopus 로고    scopus 로고
    • On the difficulties of disclosure prevention in statistical databases or the case for differential privacy
    • C. Dwork and M. Naor. On the difficulties of disclosure prevention in statistical databases or the case for differential privacy. Journal of Privacy and Confidentiality, 2010.
    • (2010) Journal of Privacy and Confidentiality
    • Dwork, C.1    Naor, M.2
  • 28
    • 70350689921 scopus 로고    scopus 로고
    • On the complexity of differentially private data release: Efficient algorithms and hardness results
    • C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan. On the complexity of differentially private data release: Efficient algorithms and hardness results. In Symposium on Theory of Computing '09, pages 381-390. 2009.
    • (2009) Symposium on Theory of Computing , vol.9 , pp. 381-390
    • Dwork, C.1    Naor, M.2    Reingold, O.3    Rothblum, G.N.4    Vadhan, S.P.5
  • 31
    • 35048856104 scopus 로고    scopus 로고
    • Privacy-preserving datamining on vertically partitioned databases
    • C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In Proceedings of Cryptology 2004, vol. 3152, pages 528-544. 2004.
    • (2004) Proceedings of Cryptology , vol.3152 , Issue.2004 , pp. 528-544
    • Dwork, C.1    Nissim, K.2
  • 38
    • 79959740503 scopus 로고    scopus 로고
    • Privately releasing conjunctions and the statistical query barrier
    • A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing conjunctions and the statistical query barrier. In Symposium on Theory of Computing '11, pages 803-812. 2011.
    • (2011) Symposium on Theory of Computing ' , vol.11 , pp. 803-812
    • Gupta, A.1    Hardt, M.2    Roth, A.3    Ullman, J.4
  • 42
    • 84862594279 scopus 로고    scopus 로고
    • Beating randomized response on incoherent matrices
    • Association for Computing Machinery
    • M. Hardt and A. Roth. Beating randomized response on incoherent matrices. In Proceedings of the Symposium on Theory of Computing, pages 1255-1268. Association for Computing Machinery, 2012.
    • (2012) Proceedings of the Symposium on Theory of Computing , pp. 1255-1268
    • Hardt, M.1    Roth, A.2
  • 44
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • IEEE Computer Society
    • M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In Foundations of Computer Science, pages 61-70. IEEE Computer Society, 2010.
    • (2010) Foundations of Computer Science , pp. 61-70
    • Hardt, M.1    Rothblum, N.G.2
  • 51
    • 84876059763 scopus 로고    scopus 로고
    • On differentially private low rank approximation. in Sanjeev Khanna, editor
    • SIAM
    • M. Kapralov and K. Talwar. On differentially private low rank approximation. In Sanjeev Khanna, editor, Symposium on Discrete Algorthims, pages 1395-1414. SIAM, 2013.
    • (2013) Symposium on Discrete Algorthims , pp. 1395-1414
    • Kapralov, M.1    Talwar, K.2
  • 55
    • 84893149822 scopus 로고    scopus 로고
    • Private convex empirical risk minimization and high-dimensional regression
    • D. Kifer, A. Smith, and A. Thakurta. Private convex empirical risk minimization and high-dimensional regression. Journal of Machine Learning Research, 1:41, 2012.
    • (2012) Journal of Machine Learning Research , vol.1 , Issue.41
    • Kifer, D.1    Smith, A.2    Thakurta, A.3
  • 56
    • 84871390246 scopus 로고    scopus 로고
    • Take it or leave it: Running a survey when privacy comes at a cost
    • Springer
    • K. Ligett and A. Roth. Take it or leave it: Running a survey when privacy comes at a cost. In Internet and Network Economics, pages 378-391. Springer, 2012.
    • (2012) Internet and Network Economics , pp. 378-391
    • Ligett, K.1    Roth, A.2
  • 63
    • 84869429647 scopus 로고    scopus 로고
    • On significance of the least significant bits for differential privacy
    • T. Yu, G. Danezis, and V. D. Gligor, editors. Association for Computing Machinery
    • I. Mironov. On significance of the least significant bits for differential privacy. In T. Yu, G. Danezis, and V. D. Gligor, editors, Association for Computing Machinery Conference on Computer and Communications Security, pages 650-661. Association for Computing Machinery, 2012.
    • (2012) Association for Computing Machinery Conference on Computer and Communications Security , pp. 650-661
    • Mironov, I.1
  • 65
    • 50249142450 scopus 로고    scopus 로고
    • Robust de-anonymization of large sparse datasets (how to break anonymity of the netflix prize dataset)
    • A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets (how to break anonymity of the netflix prize dataset). In Proceedings of IEEE Symposium on Security and Privacy. 2008.
    • (2008) Proceedings of IEEE Symposium on Security and Privacy
    • Narayanan, A.1    Shmatikov, V.2
  • 73
    • 84875627441 scopus 로고    scopus 로고
    • Buying private data at auction: The sensitive surveyor's problem
    • A. Roth. Buying private data at auction: the sensitive surveyor's problem. Association for Computing Machinery SIGecom Exchanges, 11(1):1- 8, 2012.
    • (2012) Association for Computing Machinery SIGecom Exchanges , vol.11 , Issue.1 , pp. 1-8
    • Roth, A.1
  • 74
  • 77
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, editors Springer
    • R. Schapire. The boosting approach to machine learning: An overview. In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, editors, Nonlinear Estimation and Classification. Springer, 2003.
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.1
  • 78
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 39:297-336, 1999.
    • (1999) Machine Learning , vol.39 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 80
    • 84937945584 scopus 로고    scopus 로고
    • Differentially private feature selection via stability arguments, and the robustness of the lasso
    • A. Smith and A. G. Thakurta. Differentially private feature selection via stability arguments, and the robustness of the lasso. In Proceedings of Conference on Learning Theory. 2013.
    • (2013) Proceedings of Conference on Learning Theory
    • Smith, A.1    Thakurta, G.A.2
  • 81
    • 0031150446 scopus 로고    scopus 로고
    • Weaving technology and policy together to maintain confidentiality
    • L. Sweeney. Weaving technology and policy together to maintain confidentiality. Journal of Law, Medicines Ethics, 25:98-110, 1997.
    • (1997) Journal of Law, Medicines Ethics , vol.25 , pp. 98-110
    • Sweeney, L.1
  • 82
    • 84879825242 scopus 로고    scopus 로고
    • {2+o(1)} counting queries with differential privacy is hard
    • D. Boneh, T. Roughgarden, and J. Feigenbaum, editors. Association for Computing Machinery
    • {2+o(1)} counting queries with differential privacy is hard. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Symposium on Theory of Computing, pages 361-370. Association for Computing Machinery, 2013.
    • (2013) Symposium on Theory of Computing , pp. 361-370
    • Ullman, J.1
  • 84
    • 0013776710 scopus 로고
    • Randomized response: A survey technique for eliminating evasive answer bias
    • S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63-69, 1965.
    • (1965) Journal of the American Statistical Association , vol.60 , Issue.309 , pp. 63-69
    • Warner, S.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.