메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 203-212

What value do explicit high level concepts have in vision to language problems?

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS; PATTERN RECOGNITION; RECURRENT NEURAL NETWORKS; SEMANTICS;

EID: 84986301177     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.29     Document Type: Conference Paper
Times cited : (499)

References (59)
  • 14
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • 4
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proc. Int. Conf. Artificial Intell. & Stat., pages 249-256, 2010.
    • (2010) Proc. Int. Conf. Artificial Intell. & Stat , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 17
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • 2, 5
    • M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR, pages 853-899, 2013.
    • (2013) JAIR , pp. 853-899
    • Hodosh, M.1    Young, P.2    Hockenmaier, J.3
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • 1
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proc. IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 84862279067 scopus 로고    scopus 로고
    • Composing simple image descriptions using web-scale n-grams
    • 2, 3
    • S. Li, G. Kulkarni, T. L. Berg, A. C. Berg, and Y. Choi. Composing simple image descriptions using web-scale n-grams. In CoNLL, 2011.
    • (2011) CoNLL
    • Li, S.1    Kulkarni, G.2    Berg, T.L.3    Berg, A.C.4    Choi, Y.5
  • 32
    • 85007153677 scopus 로고    scopus 로고
    • Learning to answer questions from image using convolutional neural network
    • 3, 7
    • L. Ma, Z. Lu, and H. Li. Learning to Answer Questions From Image using Convolutional Neural Network. In AAAI, 2016.
    • (2016) AAAI
    • Ma, L.1    Lu, Z.2    Li, H.3
  • 33
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • 3
    • M. Malinowski and M. Fritz. A multi-world approach to question answering about real-world scenes based on uncertain input. In Proc. Advances in Neural Inf. Process. Syst., pages 1682-1690, 2014.
    • (2014) Proc. Advances in Neural Inf. Process. Syst , pp. 1682-1690
    • Malinowski, M.1    Fritz, M.2
  • 35
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • 2, 3, 5
    • M. Malinowski, M. Rohrbach, and M. Fritz. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images. In Proc. IEEE Int. Conf. Comp. Vis., 2015.
    • (2015) Proc. IEEE Int. Conf. Comp. Vis.
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 38
    • 84976702763 scopus 로고
    • WordNet: A lexical database for English
    • 8
    • G. A. Miller. WordNet: A lexical database for English. Communications of the ACM, 38 (11): 39-41, 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 43
  • 57
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • 5
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Proc. Conf. Association for Computational Linguistics, 2, 2014.
    • (2014) Proc. Conf. Association for Computational Linguistics , vol.2
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.