메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1837-1845

Max-margin deep generative models

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; NEURAL NETWORKS; PIECEWISE LINEAR TECHNIQUES; STOCHASTIC SYSTEMS;

EID: 84965165777     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (37)

References (37)
  • 3
    • 84919906761 scopus 로고    scopus 로고
    • Deep generative stochastic networks trainable by backprop
    • Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep generative stochastic networks trainable by backprop. In ICML, 2014.
    • (2014) ICML
    • Bengio, Y.1    Laufer, E.2    Alain, G.3    Yosinski, J.4
  • 4
    • 84867776237 scopus 로고    scopus 로고
    • Large-margin predictive latent subspace learning for multi-view data analysis
    • N. Chen, J. Zhu, F. Sun, and E. P. Xing. Large-margin predictive latent subspace learning for multi-view data analysis. IEEE Trans. on PAMI, 34(12):2365-2378, 2012.
    • (2012) IEEE Trans. on PAMI , vol.34 , Issue.12 , pp. 2365-2378
    • Chen, N.1    Zhu, J.2    Sun, F.3    Xing, E.P.4
  • 10
    • 85083951076 scopus 로고    scopus 로고
    • A method for stochastic optimization
    • D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Adam, J.L.Ba.2
  • 12
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 13
    • 84862524901 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In AISTATS, 2011.
    • (2011) AISTATS
    • Larochelle, H.1    Murray, I.2
  • 16
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 17
  • 18
    • 84965120402 scopus 로고
    • Statistical analysis with missing data
    • R. J. Little and D. B. Rubin. Statistical analysis with missing data. JMLR, 539, 1987.
    • (1987) JMLR , vol.539
    • Little, R.J.1    Rubin, D.B.2
  • 19
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. V. Matten and G. Hinton. Visualizing data using t-SNE. JMLR, 9:2579-2605, 2008.
    • (2008) JMLR , vol.9 , pp. 2579-2605
    • Matten, L.V.1    Hinton, G.2
  • 21
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 23
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • M. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On deep generative models with applications to recognition. In CVPR, 2011.
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.E.4
  • 24
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 26
  • 27
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • P. Sermanet, S. Chintala, and Y. Lecun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012.
    • (2012) ICPR
    • Sermanet, P.1    Chintala, S.2    Lecun, Y.3
  • 31
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 32
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • C. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.J.1    Joachims, T.2
  • 33
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR, 2013.
    • (2013) ICLR
    • Zeiler, M.D.1    Fergus, R.2
  • 34
    • 84869186087 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models
    • J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: Maximum margin supervised topic models. JMLR, 13:2237-2278, 2012.
    • (2012) JMLR , vol.13 , pp. 2237-2278
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 35
    • 84899824631 scopus 로고    scopus 로고
    • Gibbs max-margin topic models with data augmentation
    • J. Zhu, N. Chen, H. Perkins, and B. Zhang. Gibbs max-margin topic models with data augmentation. JMLR, 15:1073-1110, 2014.
    • (2014) JMLR , vol.15 , pp. 1073-1110
    • Zhu, J.1    Chen, N.2    Perkins, H.3    Zhang, B.4
  • 36
    • 84902818267 scopus 로고    scopus 로고
    • Bayesian inference with posterior regularization and applications to infinite latent SVMs
    • J. Zhu, N. Chen, and E. P. Xing. Bayesian inference with posterior regularization and applications to infinite latent SVMs. JMLR, 15:1799-1847, 2014.
    • (2014) JMLR , vol.15 , pp. 1799-1847
    • Zhu, J.1    Chen, N.2    Xing, E.P.3
  • 37
    • 85162025905 scopus 로고    scopus 로고
    • Partially observed maximum entropy discrimination Markov networks
    • J. Zhu, E. P. Xing, and B. Zhang. Partially observed maximum entropy discrimination Markov networks. In NIPS, 2008.
    • (2008) NIPS
    • Zhu, J.1    Xing, E.P.2    Zhang, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.