메뉴 건너뛰기




Volumn 16, Issue 6, 2015, Pages

Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins

Author keywords

Docking power; Ligand pose identification; Machine learning; Molecular docking; Scoring functions

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINS; COMPLEXATION; COST EFFECTIVENESS; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; MOLECULAR MODELING; PROTEINS; STATISTICAL TESTS;

EID: 84964698564     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-16-S6-S3     Document Type: Article
Times cited : (46)

References (34)
  • 1
    • 0037107887 scopus 로고    scopus 로고
    • Structure-based virtual screening: An overview
    • Lyne PD: Structure-based virtual screening: An overview. Drug Discovery Today. 2002, 7 (20): 1047-1055. 10.1016/S1359-6446(02)02483-2.
    • (2002) Drug Discovery Today , vol.7 , Issue.20 , pp. 1047-1055
    • Lyne, P.D.1
  • 3
    • 84856045481 scopus 로고    scopus 로고
    • A comparative assessment of conventional and machine-learning-based scoring functions in predicting binding affinities of protein-ligand complexes
    • Ashtawy HM, Mahapatra NR: A comparative assessment of conventional and machine-learning-based scoring functions in predicting binding affinities of protein-ligand complexes. Bioinformatics and Biomedicine (BIBM), 2011 IEEE International Conference On, IEEE. 2011, 9 (5): 627-630.
    • (2011) Bioinformatics and Biomedicine (BIBM), 2011 IEEE International Conference On, IEEE , vol.9 , Issue.5 , pp. 627-630
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 4
    • 84864950736 scopus 로고    scopus 로고
    • A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction
    • Ashtawy HM, Mahapatra NR: A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2012, 9 (5): 1301-1313.
    • (2012) IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) , vol.9 , Issue.5 , pp. 1301-1313
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 5
    • 0035025191 scopus 로고    scopus 로고
    • Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases
    • Ewing TJA, Makino S, Skillman AG, Kuntz ID: Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design. 2001, 15 (5): 411-428. 10.1023/A:1011115820450.
    • (2001) Journal of Computer-Aided Molecular Design , vol.15 , Issue.5 , pp. 411-428
    • Ewing, T.J.A.1    Makino, S.2    Skillman, A.G.3    Kuntz, I.D.4
  • 6
    • 0036022960 scopus 로고    scopus 로고
    • Further development and validation of empirical scoring functions for structure-based binding affinity prediction
    • Wang R, Lai L, Wang S: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design. 2002, 16 (1): 11-26. 10.1023/A:1016357811882. 10.1023/A:1016357811882
    • (2002) Journal of Computer-Aided Molecular Design , vol.16 , Issue.1 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 7
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-based scoring function to predict protein-ligand interactions
    • Gohlke H, Hendlich M, Klebe G: Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology. 2000, 295 (2): 337-356. 10.1006/jmbi.1999.3371.
    • (2000) Journal of Molecular Biology , vol.295 , Issue.2 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 8
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures
    • Wang R, Fang X, Lu Y, Wang S: The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. Journal of Medicinal Chemistry. 2004, 47 (12): 2977-2980. 10.1021/jm030580l. PMID: 15163179
    • (2004) Journal of Medicinal Chemistry , vol.47 , Issue.12 , pp. 2977-2980
    • Wang, R.1    Fang, X.2    Lu, Y.3    Wang, S.4
  • 9
    • 26444468103 scopus 로고    scopus 로고
    • General and targeted statistical potentials for protein-ligand interactions
    • Mooij W, Verdonk M: General and targeted statistical potentials for protein-ligand interactions. Proteins. 2005, 61 (2): 272-10.1002/prot.20588.
    • (2005) Proteins , vol.61 , Issue.2 , pp. 272
    • Mooij, W.1    Verdonk, M.2
  • 10
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones G, Willett P, Glen RC, Leach AR, Taylor R: Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology. 1997, 267 (3): 727-748. 10.1006/jmbi.1996.0897.
    • (1997) Journal of Molecular Biology , vol.267 , Issue.3 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 11
    • 0029294584 scopus 로고
    • Molecular recognition of the inhibitor ag-1343 by HIV-1 protease: Conformationally flexible docking by evolutionary programming
    • Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DR, Fogel LJ, Freer ST: Molecular recognition of the inhibitor ag-1343 by HIV-1 protease: Conformationally flexible docking by evolutionary programming. Chemistry & Biology. 1995, 2 (5): 317-324. 10.1016/1074-5521(95)90050-0.
    • (1995) Chemistry & Biology , vol.2 , Issue.5 , pp. 317-324
    • Gehlhaar, D.K.1    Verkhivker, G.M.2    Rejto, P.A.3    Sherman, C.J.4    Fogel, D.R.5    Fogel, L.J.6    Freer, S.T.7
  • 12
    • 84977645452 scopus 로고    scopus 로고
    • Inc., A.S: The Discovery Studio Software. San Diego, CA, version 2.0
    • Inc., A.S: The Discovery Studio Software. 2001, San Diego, CA, version 2.0
    • (2001)
  • 13
    • 26444588137 scopus 로고    scopus 로고
    • DrugScore CSD - Knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction
    • Velec HFG, Gohlke H, Klebe G: DrugScore CSD - Knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Journal of Medicinal Chemistry. 2005, 48 (20): 6296-6303. 10.1021/jm050436v.
    • (2005) Journal of Medicinal Chemistry , vol.48 , Issue.20 , pp. 6296-6303
    • Velec, H.F.G.1    Gohlke, H.2    Klebe, G.3
  • 14
    • 79251524915 scopus 로고    scopus 로고
    • Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database
    • Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K: Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. Journal of Computational Chemistry. 2011, 32 (4): 742-755. 10.1002/jcc.21643.
    • (2011) Journal of Computational Chemistry , vol.32 , Issue.4 , pp. 742-755
    • Plewczynski, D.1    Łaźniewski, M.2    Augustyniak, R.3    Ginalski, K.4
  • 15
    • 84977654935 scopus 로고    scopus 로고
    • Effects of initial settings on computational protein-ligand docking accuracies for several docking programs
    • Oda A, Yamaotsu N, Hirono S, Watanabe Y, Fukuyoshi S, Takahashi O: Effects of initial settings on computational protein-ligand docking accuracies for several docking programs. Molecular Simulation. 2014, 40 (10-11): 1-8.
    • (2014) Molecular Simulation , vol.40 , Issue.10-11 , pp. 1-8
    • Oda, A.1    Yamaotsu, N.2    Hirono, S.3    Watanabe, Y.4    Fukuyoshi, S.5    Takahashi, O.6
  • 16
    • 0037212102 scopus 로고    scopus 로고
    • LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites
    • Venkatachalam C, Jiang X, Oldfield T, Waldman M: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics and Modelling. 2003, 21 (4): 289-307. 10.1016/S1093-3263(02)00164-X.
    • (2003) Journal of Molecular Graphics and Modelling , vol.21 , Issue.4 , pp. 289-307
    • Venkatachalam, C.1    Jiang, X.2    Oldfield, T.3    Waldman, M.4
  • 17
    • 34247343346 scopus 로고    scopus 로고
    • Surflex-dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search
    • Jain AN: Surflex-dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of Computer-Aided Molecular Design. 2007, 21 (5): 281-306. 10.1007/s10822-007-9114-2.
    • (2007) Journal of Computer-Aided Molecular Design , vol.21 , Issue.5 , pp. 281-306
    • Jain, A.N.1
  • 18
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey M, Kramer B, Lengauer T, Klebe G: A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology. 1996, 261 (3): 470-489. 10.1006/jmbi.1996.0477.
    • (1996) Journal of Molecular Biology , vol.261 , Issue.3 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 20
    • 67650670324 scopus 로고    scopus 로고
    • The BLAST sequence analysis tool
    • National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD
    • Madden T: The BLAST sequence analysis tool. The NCBI Handbook. 2002, National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD
    • (2002) The NCBI Handbook
    • Madden, T.1
  • 21
    • 0033674405 scopus 로고    scopus 로고
    • Virtual screening with solvation and ligand-induced complementarity
    • Schnecke V, Kuhn LA: Virtual screening with solvation and ligand-induced complementarity. Perspectives in drug discovery and design. 2000, 20 (1): 171-190. 10.1023/A:1008737207775.
    • (2000) Perspectives in drug discovery and design , vol.20 , Issue.1 , pp. 171-190
    • Schnecke, V.1    Kuhn, L.A.2
  • 22
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JBO: A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010, 26 (9): 1169-10.1093/bioinformatics/btq112.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1169
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 23
    • 84977621467 scopus 로고    scopus 로고
    • BioSolveIT: LeadIT. St Augustin, Germany. version 2.1
    • BioSolveIT: LeadIT. St Augustin, Germany. 2012, version 2.1
    • (2012)
  • 24
    • 84977666500 scopus 로고    scopus 로고
    • Inc., T: The SYBYL Software. 1699 South Hanley Rd., St Louis, Missouri, 63144, USA. version 7.2
    • Inc., T: The SYBYL Software. 1699 South Hanley Rd., St Louis, Missouri, 63144, USA. 2006, version 7.2
    • (2006)
  • 25
    • 80051663761 scopus 로고    scopus 로고
    • The Schrödinger Software
    • New York. version 8.0
    • Schrödinger L: The Schrödinger Software. New York. 2005, version 8.0
    • (2005)
    • Schrödinger, L.1
  • 27
    • 79951480123 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing
    • Team, R.D.C: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2010, R Foundation for Statistical Computing, ISBN 3-900051-07-0, [ http://www.R-project.org/ ]
    • (2010)
  • 28
    • 84883404561 scopus 로고    scopus 로고
    • Earth: Multivariate Adaptive Regression Spline Models
    • R package version 2.4-5
    • Stephen Milborrow TH, Tibshirani R: Earth: Multivariate Adaptive Regression Spline Models. R package version 2.4-5. 2010
    • (2010)
    • Stephen Milborrow, T.H.1    Tibshirani, R.2
  • 29
    • 84864961604 scopus 로고    scopus 로고
    • Kknn: Weighted k-Nearest Neighbors
    • R package version 1.0-8.
    • Hechenbichler KSK: Kknn: Weighted k-Nearest Neighbors. R package version 1.0-8. 2010
    • (2010)
    • Hechenbichler, K.S.K.1
  • 30
    • 2942519065 scopus 로고    scopus 로고
    • E1071: Miscellaneous Functions of the Department of Statistics
    • (e1071), TU Wien. R package version 1.5-24.
    • Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A: E1071: Miscellaneous Functions of the Department of Statistics (e1071), TU Wien. R package version 1.5-24. 2010
    • (2010)
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3    Meyer, D.4    Weingessel, A.5
  • 31
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L: Random forests. Machine Learning. 2001, 45 (1): 5-32. 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 32
    • 33750407091 scopus 로고    scopus 로고
    • Gbm: Generalized Boosted Regression Models
    • R package version 1.6-3.1.
    • Ridgeway G: Gbm: Generalized Boosted Regression Models. R package version 1.6-3.1. 2010
    • (2010)
    • Ridgeway, G.1
  • 34
    • 80051984855 scopus 로고    scopus 로고
    • Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions
    • Ballester PJ, Mitchell JBO: Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions. Journal of Chemical Information and Modeling. 2011, 51 (8): 1739-1741. 10.1021/ci200057e.
    • (2011) Journal of Chemical Information and Modeling , vol.51 , Issue.8 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.