-
1
-
-
84950104119
-
Heart Disease and Stroke Statistics – 2016 Update: a report from the American Heart Association
-
1 Writing Group Members, et al. Heart Disease and Stroke Statistics – 2016 Update: a report from the American Heart Association. Circulation 133 (2016), e38–e360.
-
(2016)
Circulation
, vol.133
, pp. e38-e360
-
-
Writing Group Members1
-
2
-
-
84961778300
-
Cardiac fibrosis: the fibroblast awakens
-
2 Travers, J.G., et al. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118 (2016), 1021–1040.
-
(2016)
Circ. Res.
, vol.118
, pp. 1021-1040
-
-
Travers, J.G.1
-
3
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
-
3 Mikawa, T., Gourdie, R.G., Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174 (1996), 221–232.
-
(1996)
Dev. Biol.
, vol.174
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
4
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
4 Cai, C.L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454 (2008), 104–108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
-
5
-
-
84910111838
-
Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation
-
5 Ali, S.R., et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115 (2014), 625–635.
-
(2014)
Circ. Res.
, vol.115
, pp. 625-635
-
-
Ali, S.R.1
-
6
-
-
84898829296
-
Origin, development, and differentiation of cardiac fibroblasts
-
6 Lajiness, J.D., Conway, S.J., Origin, development, and differentiation of cardiac fibroblasts. J. Mol. Cell. Cardiol. 70 (2014), 2–8.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.70
, pp. 2-8
-
-
Lajiness, J.D.1
Conway, S.J.2
-
7
-
-
84901933884
-
Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling
-
7 Ma, Y., et al. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. 466 (2014), 1113–1127.
-
(2014)
Pflugers Arch.
, vol.466
, pp. 1113-1127
-
-
Ma, Y.1
-
8
-
-
24944465021
-
Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair
-
8 Yano, T., et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc. Pathol. 14 (2005), 241–246.
-
(2005)
Cardiovasc. Pathol.
, vol.14
, pp. 241-246
-
-
Yano, T.1
-
9
-
-
38949214016
-
Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction
-
9 van Amerongen, M.J., Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J. Pathol. 214 (2008), 377–386.
-
(2008)
J. Pathol.
, vol.214
, pp. 377-386
-
-
van Amerongen, M.J.1
-
10
-
-
79955498411
-
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
-
10 Zhou, B., et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121 (2011), 1894–1904.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
-
11
-
-
84929190546
-
Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar
-
11 Ruiz-Villalba, A., Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. Coll. Cardiol. 65 (2015), 2057–2066.
-
(2015)
J. Am. Coll. Cardiol.
, vol.65
, pp. 2057-2066
-
-
Ruiz-Villalba, A.1
-
12
-
-
79959628679
-
Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition
-
12 Aisagbonhi, O., et al. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech. 4 (2011), 469–483.
-
(2011)
Dis. Model. Mech.
, vol.4
, pp. 469-483
-
-
Aisagbonhi, O.1
-
13
-
-
84871186965
-
Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction
-
13 Fligny, C., Duffield, J.S., Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction. Curr. Opin. Rheumatol. 25 (2013), 78–86.
-
(2013)
Curr. Opin. Rheumatol.
, vol.25
, pp. 78-86
-
-
Fligny, C.1
Duffield, J.S.2
-
14
-
-
84886054689
-
Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts
-
14 Trial, J., et al. Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts. Front. Immunol., 4, 2013, 287.
-
(2013)
Front. Immunol.
, vol.4
, pp. 287
-
-
Trial, J.1
-
15
-
-
84903762014
-
Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis
-
15 Moore-Morris, T., et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124 (2014), 2921–2934.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 2921-2934
-
-
Moore-Morris, T.1
-
16
-
-
77957854278
-
Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β
-
16 Teekakirikul, P., et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β. J. Clin. Invest. 120 (2010), 3520–3529.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3520-3529
-
-
Teekakirikul, P.1
-
17
-
-
84886731169
-
Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease
-
17 Braitsch, C.M., et al. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 65 (2013), 108–119.
-
(2013)
J. Mol. Cell. Cardiol.
, vol.65
, pp. 108-119
-
-
Braitsch, C.M.1
-
18
-
-
84981485012
-
Myofibroblasts and inflammatory cells as players of cardiac fibrosis
-
18 Kurose, H., Mangmool, S., Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch. Pharm. Res. 39 (2016), 1100–1113.
-
(2016)
Arch. Pharm. Res.
, vol.39
, pp. 1100-1113
-
-
Kurose, H.1
Mangmool, S.2
-
19
-
-
77957729712
-
The origin of fibroblasts and mechanism of cardiac fibrosis
-
19 Krenning, G., et al. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225 (2010), 631–637.
-
(2010)
J. Cell. Physiol.
, vol.225
, pp. 631-637
-
-
Krenning, G.1
-
20
-
-
84958559113
-
Revisiting cardiac cellular composition
-
20 Pinto, A.R., et al. Revisiting cardiac cellular composition. Circ. Res. 118 (2016), 400–409.
-
(2016)
Circ. Res.
, vol.118
, pp. 400-409
-
-
Pinto, A.R.1
-
21
-
-
84861394103
-
The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors
-
21 Acharya, A., et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139 (2012), 2139–2149.
-
(2012)
Development
, vol.139
, pp. 2139-2149
-
-
Acharya, A.1
-
22
-
-
84979220596
-
Genetic lineage tracing defines myofibroblast origin and function in the injured heart
-
22 Kanisicak, O., et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun., 7, 2016, 12260.
-
(2016)
Nat. Commun.
, vol.7
, pp. 12260
-
-
Kanisicak, O.1
-
23
-
-
84878193034
-
Extracellular matrix and fibroblast communication following myocardial infarction
-
23 Ma, Y., et al. Extracellular matrix and fibroblast communication following myocardial infarction. J. Cardiovasc. Transl. Res. 5 (2012), 848–857.
-
(2012)
J. Cardiovasc. Transl. Res.
, vol.5
, pp. 848-857
-
-
Ma, Y.1
-
24
-
-
0025365712
-
Regulation of vimentin expression in cultured human mammary epithelial cells
-
24 Mork, C., et al. Regulation of vimentin expression in cultured human mammary epithelial cells. Differentiation 43 (1990), 146–156.
-
(1990)
Differentiation
, vol.43
, pp. 146-156
-
-
Mork, C.1
-
25
-
-
33646341752
-
Sensing extracellular matrix: an update on discoidin domain receptor function
-
25 Vogel, W.F., et al. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell. Signal. 18 (2006), 1108–1116.
-
(2006)
Cell. Signal.
, vol.18
, pp. 1108-1116
-
-
Vogel, W.F.1
-
26
-
-
33846967113
-
Identification of fibroblast heterogeneity in the tumor microenvironment
-
26 Sugimoto, H., et al. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5 (2006), 1640–1646.
-
(2006)
Cancer Biol. Ther.
, vol.5
, pp. 1640-1646
-
-
Sugimoto, H.1
-
27
-
-
0027302568
-
Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin
-
27 Rettig, W.J., et al. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res. 53 (1993), 3327–3335.
-
(1993)
Cancer Res.
, vol.53
, pp. 3327-3335
-
-
Rettig, W.J.1
-
28
-
-
0035794238
-
In fibroblasts Vegf-D expression is induced by cell–cell contact mediated by cadherin-11
-
28 Orlandini, M., Oliviero, S., In fibroblasts Vegf-D expression is induced by cell–cell contact mediated by cadherin-11. J. Biol. Chem. 276 (2001), 6576–6581.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 6576-6581
-
-
Orlandini, M.1
Oliviero, S.2
-
29
-
-
0031828004
-
The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1
-
29 Serini, G., et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142 (1998), 873–881.
-
(1998)
J. Cell Biol.
, vol.142
, pp. 873-881
-
-
Serini, G.1
-
30
-
-
0033776206
-
Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb)
-
30 Frangogiannis, N.G., Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48 (2000), 89–100.
-
(2000)
Cardiovasc. Res.
, vol.48
, pp. 89-100
-
-
Frangogiannis, N.G.1
-
31
-
-
79958799319
-
Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling
-
31 Smith, C.L., et al. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108 (2011), e15–e26.
-
(2011)
Circ. Res.
, vol.108
, pp. e15-e26
-
-
Smith, C.L.1
-
32
-
-
24944488050
-
Altered fibroblast function following myocardial infarction
-
32 Squires, C.E., et al. Altered fibroblast function following myocardial infarction. J. Mol. Cell. Cardiol. 39 (2005), 699–707.
-
(2005)
J. Mol. Cell. Cardiol.
, vol.39
, pp. 699-707
-
-
Squires, C.E.1
-
33
-
-
84874958737
-
Function and fate of myofibroblasts after myocardial infarction
-
33 Turner, N.A., Porter, K.E., Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair, 6, 2013, 5.
-
(2013)
Fibrogenesis Tissue Repair
, vol.6
, pp. 5
-
-
Turner, N.A.1
Porter, K.E.2
-
34
-
-
84855998104
-
Myofibroblasts in the infarct area: concepts and challenges
-
34 Daskalopoulos, E., Myofibroblasts in the infarct area: concepts and challenges. Microsc. Microanal. 18 (2012), 35–49.
-
(2012)
Microsc. Microanal.
, vol.18
, pp. 35-49
-
-
Daskalopoulos, E.1
-
35
-
-
76849087987
-
Myocardial remodeling after infarction: the role of myofibroblasts
-
35 van den Borne, S.W., Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7 (2010), 30–37.
-
(2010)
Nat. Rev. Cardiol.
, vol.7
, pp. 30-37
-
-
van den Borne, S.W.1
-
36
-
-
71549122284
-
Mouse strain determines the outcome of wound healing after myocardial infarction
-
36 van den Borne, S.W.M., Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc. Res. 84 (2009), 273–282.
-
(2009)
Cardiovasc. Res.
, vol.84
, pp. 273-282
-
-
van den Borne, S.W.M.1
-
37
-
-
84874969415
-
The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction
-
37 van Nieuwenhoven, F.A., Turner, N.A., The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul. Pharmacol. 58 (2013), 182–188.
-
(2013)
Vascul. Pharmacol.
, vol.58
, pp. 182-188
-
-
van Nieuwenhoven, F.A.1
Turner, N.A.2
-
38
-
-
84899081318
-
Fibroblasts in myocardial infarction: a role in inflammation and repair
-
38 Shinde, A.V., Frangogiannis, N.G., Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol. 70 (2014), 74–82.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.70
, pp. 74-82
-
-
Shinde, A.V.1
Frangogiannis, N.G.2
-
39
-
-
84951129164
-
Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs)
-
39 Turner, N.A., Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J. Mol. Cell. Cardiol. 94 (2016), 189–200.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.94
, pp. 189-200
-
-
Turner, N.A.1
-
40
-
-
69249156926
-
Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts
-
40 Turner, N.A., et al. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297 (2009), H1117–H1127.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
, pp. H1117-H1127
-
-
Turner, N.A.1
-
41
-
-
0034805654
-
Hydrogen peroxide is a novel inducer of connective tissue growth factor
-
41 Park, S.K., et al. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem. Biophys. Res. Commun. 284 (2001), 966–971.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.284
, pp. 966-971
-
-
Park, S.K.1
-
42
-
-
0029736871
-
Redox-mediated activation of latent transforming growth factor-beta 1
-
42 Barcellos-Hoff, M.H., Dix, T.A., Redox-mediated activation of latent transforming growth factor-beta 1. Mol. Endocrinol. 10 (1996), 1077–1083.
-
(1996)
Mol. Endocrinol.
, vol.10
, pp. 1077-1083
-
-
Barcellos-Hoff, M.H.1
Dix, T.A.2
-
43
-
-
33645517324
-
Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species
-
43 Lijnen, P., et al. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J. Hypertens. 24 (2006), 757–766.
-
(2006)
J. Hypertens.
, vol.24
, pp. 757-766
-
-
Lijnen, P.1
-
44
-
-
0035497740
-
Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling
-
44 Hwang, M.W., et al. Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 38 (2001), 1546–1553.
-
(2001)
J. Am. Coll. Cardiol.
, vol.38
, pp. 1546-1553
-
-
Hwang, M.W.1
-
45
-
-
33846981910
-
IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways
-
45 Mitchell, M.D., et al. IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H1139–H1147.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, pp. H1139-H1147
-
-
Mitchell, M.D.1
-
46
-
-
0028990133
-
Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture
-
46 Palmer, J.N., et al. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J. Clin. Invest. 95 (1995), 2555–2564.
-
(1995)
J. Clin. Invest.
, vol.95
, pp. 2555-2564
-
-
Palmer, J.N.1
-
47
-
-
0032749402
-
Tumor necrosis factor-α at acute myocardial infarction in rats and effects on cardiac fibroblasts
-
47 Jacobs, M., et al. Tumor necrosis factor-α at acute myocardial infarction in rats and effects on cardiac fibroblasts. J. Mol. Cell. Cardiol. 31 (1999), 1949–1959.
-
(1999)
J. Mol. Cell. Cardiol.
, vol.31
, pp. 1949-1959
-
-
Jacobs, M.1
-
48
-
-
0036945213
-
Tumor necrosis factor-α-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis
-
48 Peng, J., et al. Tumor necrosis factor-α-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ. Res. 91 (2002), 1119–1126.
-
(2002)
Circ. Res.
, vol.91
, pp. 1119-1126
-
-
Peng, J.1
-
49
-
-
34548452154
-
Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones
-
49 Turner, N.A., et al. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc. Res. 76 (2007), 81–90.
-
(2007)
Cardiovasc. Res.
, vol.76
, pp. 81-90
-
-
Turner, N.A.1
-
50
-
-
77956922065
-
Extracellular matrix roles during cardiac repair
-
50 Jourdan-Lesaux, C., Extracellular matrix roles during cardiac repair. Life Sci. 87 (2010), 391–400.
-
(2010)
Life Sci.
, vol.87
, pp. 391-400
-
-
Jourdan-Lesaux, C.1
-
51
-
-
77956627158
-
Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction
-
51 Dobaczewski, M., et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107 (2010), 418–428.
-
(2010)
Circ. Res.
, vol.107
, pp. 418-428
-
-
Dobaczewski, M.1
-
52
-
-
0030014832
-
Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors
-
52 Gharaee-Kermani, M., et al. Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J. Biol. Chem. 271 (1996), 17779–17784.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 17779-17784
-
-
Gharaee-Kermani, M.1
-
53
-
-
33846867740
-
Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy
-
53 Frangogiannis, N.G., Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 115 (2007), 584–592.
-
(2007)
Circulation
, vol.115
, pp. 584-592
-
-
Frangogiannis, N.G.1
-
54
-
-
20944449211
-
CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts
-
54 Dewald, O., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96 (2005), 881–889.
-
(2005)
Circ. Res.
, vol.96
, pp. 881-889
-
-
Dewald, O.1
-
55
-
-
79961096595
-
Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration
-
55 Freed, D.H., et al. Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. Am. J. Physiol. Heart Circ. Physiol. 301 (2011), H514–H522.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. H514-H522
-
-
Freed, D.H.1
-
56
-
-
77649276038
-
The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction
-
56 Dobaczewski, M., et al. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48 (2010), 504–511.
-
(2010)
J. Mol. Cell. Cardiol.
, vol.48
, pp. 504-511
-
-
Dobaczewski, M.1
-
57
-
-
33748796635
-
Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions
-
57 Eckes, B., et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J. Investig. Dermatol. Symp. Proc. 11 (2006), 66–72.
-
(2006)
J. Investig. Dermatol. Symp. Proc.
, vol.11
, pp. 66-72
-
-
Eckes, B.1
-
58
-
-
84949639933
-
Mechanical control of cardiac myofibroblasts
-
58 van Putten, S., et al. Mechanical control of cardiac myofibroblasts. J. Mol. Cell. Cardiol. 93 (2016), 133–142.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.93
, pp. 133-142
-
-
van Putten, S.1
-
59
-
-
84983684781
-
Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype
-
59 Roche, P.L., et al. Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype. Am. J. Physiol. Cell. Physiol. 311 (2016), C297–C307.
-
(2016)
Am. J. Physiol. Cell. Physiol.
, vol.311
, pp. C297-C307
-
-
Roche, P.L.1
-
60
-
-
84867767699
-
Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation
-
60 Harada, M., et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126 (2012), 2051–2064.
-
(2012)
Circulation
, vol.126
, pp. 2051-2064
-
-
Harada, M.1
-
61
-
-
84938922666
-
2+ channel in renal fibrosis
-
2+ channel in renal fibrosis. J. Am. Soc. Nephrol. 26 (2015), 1855–1876.
-
(2015)
J. Am. Soc. Nephrol.
, vol.26
, pp. 1855-1876
-
-
Saliba, Y.1
-
62
-
-
84953294032
-
Transcriptional control of cardiac fibroblast plasticity
-
62 Lighthouse, J.K., Small, E.M., Transcriptional control of cardiac fibroblast plasticity. J. Mol. Cell. Cardiol. 91 (2016), 52–60.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.91
, pp. 52-60
-
-
Lighthouse, J.K.1
Small, E.M.2
-
63
-
-
45149112555
-
MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells
-
63 Elberg, G., et al. MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells. Am. J. Physiol. Renal Physiol. 294 (2008), F1116–F1128.
-
(2008)
Am. J. Physiol. Renal Physiol.
, vol.294
, pp. F1116-F1128
-
-
Elberg, G.1
-
64
-
-
84892404296
-
Cell adhesion and shape regulate TGF-β1-induced epithelial–myofibroblast transition via MRTF-A signaling
-
64 O'Connor, J.W., Gomez, E.W., Cell adhesion and shape regulate TGF-β1-induced epithelial–myofibroblast transition via MRTF-A signaling. PLoS One, 8, 2013, e83188.
-
(2013)
PLoS One
, vol.8
, pp. e83188
-
-
O'Connor, J.W.1
Gomez, E.W.2
-
65
-
-
84875069394
-
Fibroblasts in post-infarction inflammation and cardiac repair
-
65 Chen, W., Frangogiannis, N.G., Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta 1833 (2013), 945–953.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 945-953
-
-
Chen, W.1
Frangogiannis, N.G.2
-
66
-
-
0029061556
-
Regulation of collagen degradation in the rat myocardium after infarction
-
66 Cleutjens, J.P., et al. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27 (1995), 1281–1292.
-
(1995)
J. Mol. Cell. Cardiol.
, vol.27
, pp. 1281-1292
-
-
Cleutjens, J.P.1
-
67
-
-
1542319857
-
Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction
-
67 Dewald, O., et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164 (2004), 665–677.
-
(2004)
Am. J. Pathol.
, vol.164
, pp. 665-677
-
-
Dewald, O.1
-
68
-
-
0028793752
-
Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts
-
68 Booz, G.W., Baker, K.M., Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc. Res. 30 (1995), 537–543.
-
(1995)
Cardiovasc. Res.
, vol.30
, pp. 537-543
-
-
Booz, G.W.1
Baker, K.M.2
-
69
-
-
84942522777
-
A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis
-
69 Lindsey, M.L., et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J. Am. Coll. Cardiol. 66 (2015), 1364–1374.
-
(2015)
J. Am. Coll. Cardiol.
, vol.66
, pp. 1364-1374
-
-
Lindsey, M.L.1
-
70
-
-
0028173386
-
The α-smooth muscle actin-positive cells in healing human myocardial scars
-
70 Willems, I.E., et al. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol 145 (1994), 868–875.
-
(1994)
Am. J. Pathol
, vol.145
, pp. 868-875
-
-
Willems, I.E.1
-
71
-
-
84952911245
-
The Janus face of myofibroblasts in the remodeling heart
-
71 Hermans, K.C., et al. The Janus face of myofibroblasts in the remodeling heart. J. Mol. Cell. Cardiol. 91 (2016), 35–41.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.91
, pp. 35-41
-
-
Hermans, K.C.1
-
72
-
-
84930702552
-
Harnessing the heart of big data
-
72 Scruggs, S.B., et al. Harnessing the heart of big data. Circ. Res. 116 (2015), 1115–1119.
-
(2015)
Circ. Res.
, vol.116
, pp. 1115-1119
-
-
Scruggs, S.B.1
-
73
-
-
68049093192
-
Cardiac alternans induced by fibroblast–myocyte coupling: mechanistic insights from computational models
-
73 Xie, Y., et al. Cardiac alternans induced by fibroblast–myocyte coupling: mechanistic insights from computational models. Am. J. Physiol. Heart Circ. Physiol. 297 (2009), H775–H784.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
, pp. H775-H784
-
-
Xie, Y.1
-
74
-
-
80053110376
-
Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density
-
74 McDowell, K.S., et al. Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density. Biophys. J. 101 (2011), 1307–1315.
-
(2011)
Biophys. J.
, vol.101
, pp. 1307-1315
-
-
McDowell, K.S.1
-
75
-
-
84897071086
-
Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study
-
75 Zhan, H.Q., et al. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. J. Zhejiang Univ. Sci. B 15 (2014), 225–242.
-
(2014)
J. Zhejiang Univ. Sci. B
, vol.15
, pp. 225-242
-
-
Zhan, H.Q.1
-
76
-
-
63949084355
-
A model of electrical conduction in cardiac tissue including fibroblasts
-
76 Sachse, F.B., et al. A model of electrical conduction in cardiac tissue including fibroblasts. Ann. Biomed. Eng. 37 (2009), 874–889.
-
(2009)
Ann. Biomed. Eng.
, vol.37
, pp. 874-889
-
-
Sachse, F.B.1
-
77
-
-
84957598870
-
CARFMAP: a curated pathway map of cardiac fibroblasts
-
77 Nim, H.T., et al. CARFMAP: a curated pathway map of cardiac fibroblasts. PLoS One, 10, 2015, e0143274.
-
(2015)
PLoS One
, vol.10
, pp. e0143274
-
-
Nim, H.T.1
-
78
-
-
84962588253
-
Computational modeling of cardiac fibroblasts and fibrosis
-
78 Zeigler, A.C., et al. Computational modeling of cardiac fibroblasts and fibrosis. J. Mol. Cell. Cardiol. 93 (2016), 73–83.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.93
, pp. 73-83
-
-
Zeigler, A.C.1
-
79
-
-
84962711118
-
A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation
-
79 Zeigler, A.C., et al. A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. J. Mol. Cell. Cardiol. 94 (2016), 72–81.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.94
, pp. 72-81
-
-
Zeigler, A.C.1
-
80
-
-
77953915234
-
Construction of a large scale integrated map of macrophage pathogen recognition and effector systems
-
80 Raza, S., et al. Construction of a large scale integrated map of macrophage pathogen recognition and effector systems. BMC Syst. Biol., 4, 2010, 63.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 63
-
-
Raza, S.1
-
81
-
-
84889086804
-
Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function
-
81 van Nieuwenhoven, F.A., et al. Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biol. 32 (2013), 399–406.
-
(2013)
Matrix Biol.
, vol.32
, pp. 399-406
-
-
van Nieuwenhoven, F.A.1
-
82
-
-
79960408776
-
Heart failure after myocardial infarction: clinical implications and treatment
-
82 Minicucci, M.F., et al. Heart failure after myocardial infarction: clinical implications and treatment. Clin. Cardiol. 34 (2011), 410–414.
-
(2011)
Clin. Cardiol.
, vol.34
, pp. 410-414
-
-
Minicucci, M.F.1
-
83
-
-
84878183269
-
The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium
-
83 Dobaczewski, M., et al. The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium. J. Cardiovasc. Transl. Res. 5 (2012), 837–847.
-
(2012)
J. Cardiovasc. Transl. Res.
, vol.5
, pp. 837-847
-
-
Dobaczewski, M.1
|