메뉴 건너뛰기




Volumn 38, Issue 5, 2017, Pages 448-458

Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps

Author keywords

big data; computational models; extracellular matrix; fibroblast; inflammation; myocardial infarction; omics

Indexed keywords

ANGIOTENSIN II; BIOLOGICAL MARKER; CHEMOKINE; CONNECTIVE TISSUE GROWTH FACTOR; CYTOKINE; DISCOIDIN DOMAIN RECEPTOR; INTERLEUKIN 1BETA; MATRIX METALLOPROTEINASE; MONOCYTE CHEMOTACTIC PROTEIN 1; MYOCARDIN; MYOCARDIN RELATED TRANSCRIPTION FACTOR; OSTEONECTIN; REACTIVE OXYGEN METABOLITE; SEPRASE; SERUM RESPONSE FACTOR; TRANSFORMING GROWTH FACTOR BETA1; TRANSIENT RECEPTOR POTENTIAL CHANNEL 1; UNCLASSIFIED DRUG;

EID: 85016612898     PISSN: 01656147     EISSN: 18733735     Source Type: Journal    
DOI: 10.1016/j.tips.2017.03.001     Document Type: Review
Times cited : (156)

References (83)
  • 1
    • 84950104119 scopus 로고    scopus 로고
    • Heart Disease and Stroke Statistics – 2016 Update: a report from the American Heart Association
    • 1 Writing Group Members, et al. Heart Disease and Stroke Statistics – 2016 Update: a report from the American Heart Association. Circulation 133 (2016), e38–e360.
    • (2016) Circulation , vol.133 , pp. e38-e360
    • Writing Group Members1
  • 2
    • 84961778300 scopus 로고    scopus 로고
    • Cardiac fibrosis: the fibroblast awakens
    • 2 Travers, J.G., et al. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118 (2016), 1021–1040.
    • (2016) Circ. Res. , vol.118 , pp. 1021-1040
    • Travers, J.G.1
  • 3
    • 0029964385 scopus 로고    scopus 로고
    • Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
    • 3 Mikawa, T., Gourdie, R.G., Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174 (1996), 221–232.
    • (1996) Dev. Biol. , vol.174 , pp. 221-232
    • Mikawa, T.1    Gourdie, R.G.2
  • 4
    • 46449089721 scopus 로고    scopus 로고
    • A myocardial lineage derives from Tbx18 epicardial cells
    • 4 Cai, C.L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454 (2008), 104–108.
    • (2008) Nature , vol.454 , pp. 104-108
    • Cai, C.L.1
  • 5
    • 84910111838 scopus 로고    scopus 로고
    • Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation
    • 5 Ali, S.R., et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115 (2014), 625–635.
    • (2014) Circ. Res. , vol.115 , pp. 625-635
    • Ali, S.R.1
  • 6
    • 84898829296 scopus 로고    scopus 로고
    • Origin, development, and differentiation of cardiac fibroblasts
    • 6 Lajiness, J.D., Conway, S.J., Origin, development, and differentiation of cardiac fibroblasts. J. Mol. Cell. Cardiol. 70 (2014), 2–8.
    • (2014) J. Mol. Cell. Cardiol. , vol.70 , pp. 2-8
    • Lajiness, J.D.1    Conway, S.J.2
  • 7
    • 84901933884 scopus 로고    scopus 로고
    • Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling
    • 7 Ma, Y., et al. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. 466 (2014), 1113–1127.
    • (2014) Pflugers Arch. , vol.466 , pp. 1113-1127
    • Ma, Y.1
  • 8
    • 24944465021 scopus 로고    scopus 로고
    • Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair
    • 8 Yano, T., et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc. Pathol. 14 (2005), 241–246.
    • (2005) Cardiovasc. Pathol. , vol.14 , pp. 241-246
    • Yano, T.1
  • 9
    • 38949214016 scopus 로고    scopus 로고
    • Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction
    • 9 van Amerongen, M.J., Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J. Pathol. 214 (2008), 377–386.
    • (2008) J. Pathol. , vol.214 , pp. 377-386
    • van Amerongen, M.J.1
  • 10
    • 79955498411 scopus 로고    scopus 로고
    • Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
    • 10 Zhou, B., et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121 (2011), 1894–1904.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1894-1904
    • Zhou, B.1
  • 11
    • 84929190546 scopus 로고    scopus 로고
    • Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar
    • 11 Ruiz-Villalba, A., Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. Coll. Cardiol. 65 (2015), 2057–2066.
    • (2015) J. Am. Coll. Cardiol. , vol.65 , pp. 2057-2066
    • Ruiz-Villalba, A.1
  • 12
    • 79959628679 scopus 로고    scopus 로고
    • Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition
    • 12 Aisagbonhi, O., et al. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech. 4 (2011), 469–483.
    • (2011) Dis. Model. Mech. , vol.4 , pp. 469-483
    • Aisagbonhi, O.1
  • 13
    • 84871186965 scopus 로고    scopus 로고
    • Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction
    • 13 Fligny, C., Duffield, J.S., Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction. Curr. Opin. Rheumatol. 25 (2013), 78–86.
    • (2013) Curr. Opin. Rheumatol. , vol.25 , pp. 78-86
    • Fligny, C.1    Duffield, J.S.2
  • 14
    • 84886054689 scopus 로고    scopus 로고
    • Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts
    • 14 Trial, J., et al. Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts. Front. Immunol., 4, 2013, 287.
    • (2013) Front. Immunol. , vol.4 , pp. 287
    • Trial, J.1
  • 15
    • 84903762014 scopus 로고    scopus 로고
    • Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis
    • 15 Moore-Morris, T., et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124 (2014), 2921–2934.
    • (2014) J. Clin. Invest. , vol.124 , pp. 2921-2934
    • Moore-Morris, T.1
  • 16
    • 77957854278 scopus 로고    scopus 로고
    • Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β
    • 16 Teekakirikul, P., et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β. J. Clin. Invest. 120 (2010), 3520–3529.
    • (2010) J. Clin. Invest. , vol.120 , pp. 3520-3529
    • Teekakirikul, P.1
  • 17
    • 84886731169 scopus 로고    scopus 로고
    • Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease
    • 17 Braitsch, C.M., et al. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 65 (2013), 108–119.
    • (2013) J. Mol. Cell. Cardiol. , vol.65 , pp. 108-119
    • Braitsch, C.M.1
  • 18
    • 84981485012 scopus 로고    scopus 로고
    • Myofibroblasts and inflammatory cells as players of cardiac fibrosis
    • 18 Kurose, H., Mangmool, S., Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch. Pharm. Res. 39 (2016), 1100–1113.
    • (2016) Arch. Pharm. Res. , vol.39 , pp. 1100-1113
    • Kurose, H.1    Mangmool, S.2
  • 19
    • 77957729712 scopus 로고    scopus 로고
    • The origin of fibroblasts and mechanism of cardiac fibrosis
    • 19 Krenning, G., et al. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225 (2010), 631–637.
    • (2010) J. Cell. Physiol. , vol.225 , pp. 631-637
    • Krenning, G.1
  • 20
    • 84958559113 scopus 로고    scopus 로고
    • Revisiting cardiac cellular composition
    • 20 Pinto, A.R., et al. Revisiting cardiac cellular composition. Circ. Res. 118 (2016), 400–409.
    • (2016) Circ. Res. , vol.118 , pp. 400-409
    • Pinto, A.R.1
  • 21
    • 84861394103 scopus 로고    scopus 로고
    • The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors
    • 21 Acharya, A., et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139 (2012), 2139–2149.
    • (2012) Development , vol.139 , pp. 2139-2149
    • Acharya, A.1
  • 22
    • 84979220596 scopus 로고    scopus 로고
    • Genetic lineage tracing defines myofibroblast origin and function in the injured heart
    • 22 Kanisicak, O., et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun., 7, 2016, 12260.
    • (2016) Nat. Commun. , vol.7 , pp. 12260
    • Kanisicak, O.1
  • 23
    • 84878193034 scopus 로고    scopus 로고
    • Extracellular matrix and fibroblast communication following myocardial infarction
    • 23 Ma, Y., et al. Extracellular matrix and fibroblast communication following myocardial infarction. J. Cardiovasc. Transl. Res. 5 (2012), 848–857.
    • (2012) J. Cardiovasc. Transl. Res. , vol.5 , pp. 848-857
    • Ma, Y.1
  • 24
    • 0025365712 scopus 로고
    • Regulation of vimentin expression in cultured human mammary epithelial cells
    • 24 Mork, C., et al. Regulation of vimentin expression in cultured human mammary epithelial cells. Differentiation 43 (1990), 146–156.
    • (1990) Differentiation , vol.43 , pp. 146-156
    • Mork, C.1
  • 25
    • 33646341752 scopus 로고    scopus 로고
    • Sensing extracellular matrix: an update on discoidin domain receptor function
    • 25 Vogel, W.F., et al. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell. Signal. 18 (2006), 1108–1116.
    • (2006) Cell. Signal. , vol.18 , pp. 1108-1116
    • Vogel, W.F.1
  • 26
    • 33846967113 scopus 로고    scopus 로고
    • Identification of fibroblast heterogeneity in the tumor microenvironment
    • 26 Sugimoto, H., et al. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5 (2006), 1640–1646.
    • (2006) Cancer Biol. Ther. , vol.5 , pp. 1640-1646
    • Sugimoto, H.1
  • 27
    • 0027302568 scopus 로고
    • Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin
    • 27 Rettig, W.J., et al. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res. 53 (1993), 3327–3335.
    • (1993) Cancer Res. , vol.53 , pp. 3327-3335
    • Rettig, W.J.1
  • 28
    • 0035794238 scopus 로고    scopus 로고
    • In fibroblasts Vegf-D expression is induced by cell–cell contact mediated by cadherin-11
    • 28 Orlandini, M., Oliviero, S., In fibroblasts Vegf-D expression is induced by cell–cell contact mediated by cadherin-11. J. Biol. Chem. 276 (2001), 6576–6581.
    • (2001) J. Biol. Chem. , vol.276 , pp. 6576-6581
    • Orlandini, M.1    Oliviero, S.2
  • 29
    • 0031828004 scopus 로고    scopus 로고
    • The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1
    • 29 Serini, G., et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142 (1998), 873–881.
    • (1998) J. Cell Biol. , vol.142 , pp. 873-881
    • Serini, G.1
  • 30
    • 0033776206 scopus 로고    scopus 로고
    • Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb)
    • 30 Frangogiannis, N.G., Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48 (2000), 89–100.
    • (2000) Cardiovasc. Res. , vol.48 , pp. 89-100
    • Frangogiannis, N.G.1
  • 31
    • 79958799319 scopus 로고    scopus 로고
    • Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling
    • 31 Smith, C.L., et al. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108 (2011), e15–e26.
    • (2011) Circ. Res. , vol.108 , pp. e15-e26
    • Smith, C.L.1
  • 32
    • 24944488050 scopus 로고    scopus 로고
    • Altered fibroblast function following myocardial infarction
    • 32 Squires, C.E., et al. Altered fibroblast function following myocardial infarction. J. Mol. Cell. Cardiol. 39 (2005), 699–707.
    • (2005) J. Mol. Cell. Cardiol. , vol.39 , pp. 699-707
    • Squires, C.E.1
  • 33
    • 84874958737 scopus 로고    scopus 로고
    • Function and fate of myofibroblasts after myocardial infarction
    • 33 Turner, N.A., Porter, K.E., Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair, 6, 2013, 5.
    • (2013) Fibrogenesis Tissue Repair , vol.6 , pp. 5
    • Turner, N.A.1    Porter, K.E.2
  • 34
    • 84855998104 scopus 로고    scopus 로고
    • Myofibroblasts in the infarct area: concepts and challenges
    • 34 Daskalopoulos, E., Myofibroblasts in the infarct area: concepts and challenges. Microsc. Microanal. 18 (2012), 35–49.
    • (2012) Microsc. Microanal. , vol.18 , pp. 35-49
    • Daskalopoulos, E.1
  • 35
    • 76849087987 scopus 로고    scopus 로고
    • Myocardial remodeling after infarction: the role of myofibroblasts
    • 35 van den Borne, S.W., Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7 (2010), 30–37.
    • (2010) Nat. Rev. Cardiol. , vol.7 , pp. 30-37
    • van den Borne, S.W.1
  • 36
    • 71549122284 scopus 로고    scopus 로고
    • Mouse strain determines the outcome of wound healing after myocardial infarction
    • 36 van den Borne, S.W.M., Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc. Res. 84 (2009), 273–282.
    • (2009) Cardiovasc. Res. , vol.84 , pp. 273-282
    • van den Borne, S.W.M.1
  • 37
    • 84874969415 scopus 로고    scopus 로고
    • The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction
    • 37 van Nieuwenhoven, F.A., Turner, N.A., The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul. Pharmacol. 58 (2013), 182–188.
    • (2013) Vascul. Pharmacol. , vol.58 , pp. 182-188
    • van Nieuwenhoven, F.A.1    Turner, N.A.2
  • 38
    • 84899081318 scopus 로고    scopus 로고
    • Fibroblasts in myocardial infarction: a role in inflammation and repair
    • 38 Shinde, A.V., Frangogiannis, N.G., Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol. 70 (2014), 74–82.
    • (2014) J. Mol. Cell. Cardiol. , vol.70 , pp. 74-82
    • Shinde, A.V.1    Frangogiannis, N.G.2
  • 39
    • 84951129164 scopus 로고    scopus 로고
    • Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs)
    • 39 Turner, N.A., Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J. Mol. Cell. Cardiol. 94 (2016), 189–200.
    • (2016) J. Mol. Cell. Cardiol. , vol.94 , pp. 189-200
    • Turner, N.A.1
  • 40
    • 69249156926 scopus 로고    scopus 로고
    • Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts
    • 40 Turner, N.A., et al. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297 (2009), H1117–H1127.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.297 , pp. H1117-H1127
    • Turner, N.A.1
  • 41
    • 0034805654 scopus 로고    scopus 로고
    • Hydrogen peroxide is a novel inducer of connective tissue growth factor
    • 41 Park, S.K., et al. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem. Biophys. Res. Commun. 284 (2001), 966–971.
    • (2001) Biochem. Biophys. Res. Commun. , vol.284 , pp. 966-971
    • Park, S.K.1
  • 42
    • 0029736871 scopus 로고    scopus 로고
    • Redox-mediated activation of latent transforming growth factor-beta 1
    • 42 Barcellos-Hoff, M.H., Dix, T.A., Redox-mediated activation of latent transforming growth factor-beta 1. Mol. Endocrinol. 10 (1996), 1077–1083.
    • (1996) Mol. Endocrinol. , vol.10 , pp. 1077-1083
    • Barcellos-Hoff, M.H.1    Dix, T.A.2
  • 43
    • 33645517324 scopus 로고    scopus 로고
    • Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species
    • 43 Lijnen, P., et al. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J. Hypertens. 24 (2006), 757–766.
    • (2006) J. Hypertens. , vol.24 , pp. 757-766
    • Lijnen, P.1
  • 44
    • 0035497740 scopus 로고    scopus 로고
    • Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling
    • 44 Hwang, M.W., et al. Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 38 (2001), 1546–1553.
    • (2001) J. Am. Coll. Cardiol. , vol.38 , pp. 1546-1553
    • Hwang, M.W.1
  • 45
    • 33846981910 scopus 로고    scopus 로고
    • IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways
    • 45 Mitchell, M.D., et al. IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H1139–H1147.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292 , pp. H1139-H1147
    • Mitchell, M.D.1
  • 46
    • 0028990133 scopus 로고
    • Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture
    • 46 Palmer, J.N., et al. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J. Clin. Invest. 95 (1995), 2555–2564.
    • (1995) J. Clin. Invest. , vol.95 , pp. 2555-2564
    • Palmer, J.N.1
  • 47
    • 0032749402 scopus 로고    scopus 로고
    • Tumor necrosis factor-α at acute myocardial infarction in rats and effects on cardiac fibroblasts
    • 47 Jacobs, M., et al. Tumor necrosis factor-α at acute myocardial infarction in rats and effects on cardiac fibroblasts. J. Mol. Cell. Cardiol. 31 (1999), 1949–1959.
    • (1999) J. Mol. Cell. Cardiol. , vol.31 , pp. 1949-1959
    • Jacobs, M.1
  • 48
    • 0036945213 scopus 로고    scopus 로고
    • Tumor necrosis factor-α-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis
    • 48 Peng, J., et al. Tumor necrosis factor-α-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ. Res. 91 (2002), 1119–1126.
    • (2002) Circ. Res. , vol.91 , pp. 1119-1126
    • Peng, J.1
  • 49
    • 34548452154 scopus 로고    scopus 로고
    • Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones
    • 49 Turner, N.A., et al. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc. Res. 76 (2007), 81–90.
    • (2007) Cardiovasc. Res. , vol.76 , pp. 81-90
    • Turner, N.A.1
  • 50
    • 77956922065 scopus 로고    scopus 로고
    • Extracellular matrix roles during cardiac repair
    • 50 Jourdan-Lesaux, C., Extracellular matrix roles during cardiac repair. Life Sci. 87 (2010), 391–400.
    • (2010) Life Sci. , vol.87 , pp. 391-400
    • Jourdan-Lesaux, C.1
  • 51
    • 77956627158 scopus 로고    scopus 로고
    • Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction
    • 51 Dobaczewski, M., et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107 (2010), 418–428.
    • (2010) Circ. Res. , vol.107 , pp. 418-428
    • Dobaczewski, M.1
  • 52
    • 0030014832 scopus 로고    scopus 로고
    • Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors
    • 52 Gharaee-Kermani, M., et al. Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J. Biol. Chem. 271 (1996), 17779–17784.
    • (1996) J. Biol. Chem. , vol.271 , pp. 17779-17784
    • Gharaee-Kermani, M.1
  • 53
    • 33846867740 scopus 로고    scopus 로고
    • Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy
    • 53 Frangogiannis, N.G., Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 115 (2007), 584–592.
    • (2007) Circulation , vol.115 , pp. 584-592
    • Frangogiannis, N.G.1
  • 54
    • 20944449211 scopus 로고    scopus 로고
    • CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts
    • 54 Dewald, O., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96 (2005), 881–889.
    • (2005) Circ. Res. , vol.96 , pp. 881-889
    • Dewald, O.1
  • 55
    • 79961096595 scopus 로고    scopus 로고
    • Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration
    • 55 Freed, D.H., et al. Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. Am. J. Physiol. Heart Circ. Physiol. 301 (2011), H514–H522.
    • (2011) Am. J. Physiol. Heart Circ. Physiol. , vol.301 , pp. H514-H522
    • Freed, D.H.1
  • 56
    • 77649276038 scopus 로고    scopus 로고
    • The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction
    • 56 Dobaczewski, M., et al. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48 (2010), 504–511.
    • (2010) J. Mol. Cell. Cardiol. , vol.48 , pp. 504-511
    • Dobaczewski, M.1
  • 57
    • 33748796635 scopus 로고    scopus 로고
    • Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions
    • 57 Eckes, B., et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J. Investig. Dermatol. Symp. Proc. 11 (2006), 66–72.
    • (2006) J. Investig. Dermatol. Symp. Proc. , vol.11 , pp. 66-72
    • Eckes, B.1
  • 58
    • 84949639933 scopus 로고    scopus 로고
    • Mechanical control of cardiac myofibroblasts
    • 58 van Putten, S., et al. Mechanical control of cardiac myofibroblasts. J. Mol. Cell. Cardiol. 93 (2016), 133–142.
    • (2016) J. Mol. Cell. Cardiol. , vol.93 , pp. 133-142
    • van Putten, S.1
  • 59
    • 84983684781 scopus 로고    scopus 로고
    • Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype
    • 59 Roche, P.L., et al. Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype. Am. J. Physiol. Cell. Physiol. 311 (2016), C297–C307.
    • (2016) Am. J. Physiol. Cell. Physiol. , vol.311 , pp. C297-C307
    • Roche, P.L.1
  • 60
    • 84867767699 scopus 로고    scopus 로고
    • Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation
    • 60 Harada, M., et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126 (2012), 2051–2064.
    • (2012) Circulation , vol.126 , pp. 2051-2064
    • Harada, M.1
  • 61
    • 84938922666 scopus 로고    scopus 로고
    • 2+ channel in renal fibrosis
    • 2+ channel in renal fibrosis. J. Am. Soc. Nephrol. 26 (2015), 1855–1876.
    • (2015) J. Am. Soc. Nephrol. , vol.26 , pp. 1855-1876
    • Saliba, Y.1
  • 62
    • 84953294032 scopus 로고    scopus 로고
    • Transcriptional control of cardiac fibroblast plasticity
    • 62 Lighthouse, J.K., Small, E.M., Transcriptional control of cardiac fibroblast plasticity. J. Mol. Cell. Cardiol. 91 (2016), 52–60.
    • (2016) J. Mol. Cell. Cardiol. , vol.91 , pp. 52-60
    • Lighthouse, J.K.1    Small, E.M.2
  • 63
    • 45149112555 scopus 로고    scopus 로고
    • MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells
    • 63 Elberg, G., et al. MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells. Am. J. Physiol. Renal Physiol. 294 (2008), F1116–F1128.
    • (2008) Am. J. Physiol. Renal Physiol. , vol.294 , pp. F1116-F1128
    • Elberg, G.1
  • 64
    • 84892404296 scopus 로고    scopus 로고
    • Cell adhesion and shape regulate TGF-β1-induced epithelial–myofibroblast transition via MRTF-A signaling
    • 64 O'Connor, J.W., Gomez, E.W., Cell adhesion and shape regulate TGF-β1-induced epithelial–myofibroblast transition via MRTF-A signaling. PLoS One, 8, 2013, e83188.
    • (2013) PLoS One , vol.8 , pp. e83188
    • O'Connor, J.W.1    Gomez, E.W.2
  • 65
    • 84875069394 scopus 로고    scopus 로고
    • Fibroblasts in post-infarction inflammation and cardiac repair
    • 65 Chen, W., Frangogiannis, N.G., Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta 1833 (2013), 945–953.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 945-953
    • Chen, W.1    Frangogiannis, N.G.2
  • 66
    • 0029061556 scopus 로고
    • Regulation of collagen degradation in the rat myocardium after infarction
    • 66 Cleutjens, J.P., et al. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27 (1995), 1281–1292.
    • (1995) J. Mol. Cell. Cardiol. , vol.27 , pp. 1281-1292
    • Cleutjens, J.P.1
  • 67
    • 1542319857 scopus 로고    scopus 로고
    • Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction
    • 67 Dewald, O., et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164 (2004), 665–677.
    • (2004) Am. J. Pathol. , vol.164 , pp. 665-677
    • Dewald, O.1
  • 68
    • 0028793752 scopus 로고
    • Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts
    • 68 Booz, G.W., Baker, K.M., Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc. Res. 30 (1995), 537–543.
    • (1995) Cardiovasc. Res. , vol.30 , pp. 537-543
    • Booz, G.W.1    Baker, K.M.2
  • 69
    • 84942522777 scopus 로고    scopus 로고
    • A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis
    • 69 Lindsey, M.L., et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J. Am. Coll. Cardiol. 66 (2015), 1364–1374.
    • (2015) J. Am. Coll. Cardiol. , vol.66 , pp. 1364-1374
    • Lindsey, M.L.1
  • 70
    • 0028173386 scopus 로고
    • The α-smooth muscle actin-positive cells in healing human myocardial scars
    • 70 Willems, I.E., et al. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol 145 (1994), 868–875.
    • (1994) Am. J. Pathol , vol.145 , pp. 868-875
    • Willems, I.E.1
  • 71
    • 84952911245 scopus 로고    scopus 로고
    • The Janus face of myofibroblasts in the remodeling heart
    • 71 Hermans, K.C., et al. The Janus face of myofibroblasts in the remodeling heart. J. Mol. Cell. Cardiol. 91 (2016), 35–41.
    • (2016) J. Mol. Cell. Cardiol. , vol.91 , pp. 35-41
    • Hermans, K.C.1
  • 72
    • 84930702552 scopus 로고    scopus 로고
    • Harnessing the heart of big data
    • 72 Scruggs, S.B., et al. Harnessing the heart of big data. Circ. Res. 116 (2015), 1115–1119.
    • (2015) Circ. Res. , vol.116 , pp. 1115-1119
    • Scruggs, S.B.1
  • 73
    • 68049093192 scopus 로고    scopus 로고
    • Cardiac alternans induced by fibroblast–myocyte coupling: mechanistic insights from computational models
    • 73 Xie, Y., et al. Cardiac alternans induced by fibroblast–myocyte coupling: mechanistic insights from computational models. Am. J. Physiol. Heart Circ. Physiol. 297 (2009), H775–H784.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.297 , pp. H775-H784
    • Xie, Y.1
  • 74
    • 80053110376 scopus 로고    scopus 로고
    • Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density
    • 74 McDowell, K.S., et al. Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density. Biophys. J. 101 (2011), 1307–1315.
    • (2011) Biophys. J. , vol.101 , pp. 1307-1315
    • McDowell, K.S.1
  • 75
    • 84897071086 scopus 로고    scopus 로고
    • Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study
    • 75 Zhan, H.Q., et al. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. J. Zhejiang Univ. Sci. B 15 (2014), 225–242.
    • (2014) J. Zhejiang Univ. Sci. B , vol.15 , pp. 225-242
    • Zhan, H.Q.1
  • 76
    • 63949084355 scopus 로고    scopus 로고
    • A model of electrical conduction in cardiac tissue including fibroblasts
    • 76 Sachse, F.B., et al. A model of electrical conduction in cardiac tissue including fibroblasts. Ann. Biomed. Eng. 37 (2009), 874–889.
    • (2009) Ann. Biomed. Eng. , vol.37 , pp. 874-889
    • Sachse, F.B.1
  • 77
    • 84957598870 scopus 로고    scopus 로고
    • CARFMAP: a curated pathway map of cardiac fibroblasts
    • 77 Nim, H.T., et al. CARFMAP: a curated pathway map of cardiac fibroblasts. PLoS One, 10, 2015, e0143274.
    • (2015) PLoS One , vol.10 , pp. e0143274
    • Nim, H.T.1
  • 78
    • 84962588253 scopus 로고    scopus 로고
    • Computational modeling of cardiac fibroblasts and fibrosis
    • 78 Zeigler, A.C., et al. Computational modeling of cardiac fibroblasts and fibrosis. J. Mol. Cell. Cardiol. 93 (2016), 73–83.
    • (2016) J. Mol. Cell. Cardiol. , vol.93 , pp. 73-83
    • Zeigler, A.C.1
  • 79
    • 84962711118 scopus 로고    scopus 로고
    • A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation
    • 79 Zeigler, A.C., et al. A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. J. Mol. Cell. Cardiol. 94 (2016), 72–81.
    • (2016) J. Mol. Cell. Cardiol. , vol.94 , pp. 72-81
    • Zeigler, A.C.1
  • 80
    • 77953915234 scopus 로고    scopus 로고
    • Construction of a large scale integrated map of macrophage pathogen recognition and effector systems
    • 80 Raza, S., et al. Construction of a large scale integrated map of macrophage pathogen recognition and effector systems. BMC Syst. Biol., 4, 2010, 63.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 63
    • Raza, S.1
  • 81
    • 84889086804 scopus 로고    scopus 로고
    • Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function
    • 81 van Nieuwenhoven, F.A., et al. Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biol. 32 (2013), 399–406.
    • (2013) Matrix Biol. , vol.32 , pp. 399-406
    • van Nieuwenhoven, F.A.1
  • 82
    • 79960408776 scopus 로고    scopus 로고
    • Heart failure after myocardial infarction: clinical implications and treatment
    • 82 Minicucci, M.F., et al. Heart failure after myocardial infarction: clinical implications and treatment. Clin. Cardiol. 34 (2011), 410–414.
    • (2011) Clin. Cardiol. , vol.34 , pp. 410-414
    • Minicucci, M.F.1
  • 83
    • 84878183269 scopus 로고    scopus 로고
    • The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium
    • 83 Dobaczewski, M., et al. The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium. J. Cardiovasc. Transl. Res. 5 (2012), 837–847.
    • (2012) J. Cardiovasc. Transl. Res. , vol.5 , pp. 837-847
    • Dobaczewski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.