메뉴 건너뛰기




Volumn 45, Issue , 2017, Pages 127-135

Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass

Author keywords

[No Author keywords available]

Indexed keywords

BIOFUELS; BIOMASS; CARBON; CATALYSIS; CATALYST DEACTIVATION; CATALYSTS; CHEMICALS; FERMENTATION; FUELS; HYDROCARBONS; INVESTMENTS; METABOLIC ENGINEERING; METABOLISM; POLYMER BLENDS; REACTION INTERMEDIATES; SUGARS; SYNTHETIC FUELS;

EID: 85016503365     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2017.02.019     Document Type: Review
Times cited : (64)

References (48)
  • 1
    • 84960941501 scopus 로고    scopus 로고
    • Estimating the biotech sector's contribution to the US economy
    • 1 Carlson, R., Estimating the biotech sector's contribution to the US economy. Nat Biotechnol 34 (2016), 247–255.
    • (2016) Nat Biotechnol , vol.34 , pp. 247-255
    • Carlson, R.1
  • 2
    • 52949108884 scopus 로고    scopus 로고
    • Ethanol distillation: the fundamentals
    • Nottingham University Press
    • 2 Katzen, R., Madson, P., Moon, G., Ethanol distillation: the fundamentals. The Alcohol Textbook, 1999, Nottingham University Press, 269–288.
    • (1999) The Alcohol Textbook , pp. 269-288
    • Katzen, R.1    Madson, P.2    Moon, G.3
  • 3
    • 85006790684 scopus 로고    scopus 로고
    • Production of fuels and chemicals from biomass: condensation reactions and beyond
    • This review article provides a thorough overview of chemical and biological catalytic routes to the synthesis of fuels and industrially relevant chemicals.
    • 3• Wu, L., Moteki, T., Gokhale Amit, A., Flaherty David, W., Toste, F.D., Production of fuels and chemicals from biomass: condensation reactions and beyond. Chemistry 1 (2016), 32–58 This review article provides a thorough overview of chemical and biological catalytic routes to the synthesis of fuels and industrially relevant chemicals.
    • (2016) Chemistry , vol.1 , pp. 32-58
    • Wu, L.1    Moteki, T.2    Gokhale Amit, A.3    Flaherty David, W.4    Toste, F.D.5
  • 4
    • 84954525628 scopus 로고    scopus 로고
    • Combining microbial production with chemical upgrading
    • 4 Goulas, K.A., Toste, F.D., Combining microbial production with chemical upgrading. Curr Opin Biotechnol 38 (2016), 47–53.
    • (2016) Curr Opin Biotechnol , vol.38 , pp. 47-53
    • Goulas, K.A.1    Toste, F.D.2
  • 5
    • 84902191010 scopus 로고    scopus 로고
    • Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals
    • 5 Schwartz, T.J., O'Neill, B.J., Shanks, B.H., Dumesic, J.A., Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal 4 (2014), 2060–2069.
    • (2014) ACS Catal , vol.4 , pp. 2060-2069
    • Schwartz, T.J.1    O'Neill, B.J.2    Shanks, B.H.3    Dumesic, J.A.4
  • 6
    • 84954216839 scopus 로고    scopus 로고
    • Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals
    • This perspective begins to outline basic design rules for integrating biological and chemical catalysis. Of particular significance is the proposal that bio- and chemical catalysis should be combined through reactive intermediates that have no more than three unique functional groups.
    • 6• Schwartz, T.J., Shanks, B.H., Dumesic, J.A., Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr Opin Biotechnol 38 (2016), 54–62 This perspective begins to outline basic design rules for integrating biological and chemical catalysis. Of particular significance is the proposal that bio- and chemical catalysis should be combined through reactive intermediates that have no more than three unique functional groups.
    • (2016) Curr Opin Biotechnol , vol.38 , pp. 54-62
    • Schwartz, T.J.1    Shanks, B.H.2    Dumesic, J.A.3
  • 7
    • 83255174106 scopus 로고    scopus 로고
    • Relative potential of biosynthetic pathways for biofuels and bio-based products
    • 7 Dugar, D., Stephanopoulos, G., Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29 (2011), 1074–1078.
    • (2011) Nat Biotechnol , vol.29 , pp. 1074-1078
    • Dugar, D.1    Stephanopoulos, G.2
  • 8
    • 84945950526 scopus 로고    scopus 로고
    • Reassessing the progress in the production of advanced biofuels in the current competitive environment and beyond: what are the successes and where progress eludes us and why
    • 8 Papoutsakis, E.T., Reassessing the progress in the production of advanced biofuels in the current competitive environment and beyond: what are the successes and where progress eludes us and why. Ind Eng Chem Res 54 (2015), 10170–10182.
    • (2015) Ind Eng Chem Res , vol.54 , pp. 10170-10182
    • Papoutsakis, E.T.1
  • 9
    • 84938744275 scopus 로고    scopus 로고
    • Renewable fuels from biomass: technical hurdles and economic assessment of biological routes
    • 9 Klein-Marcuschamer, D., Blanch, H.W., Renewable fuels from biomass: technical hurdles and economic assessment of biological routes. AIChE J 61 (2015), 2689–2701.
    • (2015) AIChE J , vol.61 , pp. 2689-2701
    • Klein-Marcuschamer, D.1    Blanch, H.W.2
  • 10
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: microbial engineering for the production of sustainable biofuels
    • 10 Liao, J.C., Mi, L., Pontrelli, S., Luo, S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14 (2016), 288–304.
    • (2016) Nat Rev Microbiol , vol.14 , pp. 288-304
    • Liao, J.C.1    Mi, L.2    Pontrelli, S.3    Luo, S.4
  • 11
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
    • 11 Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R., Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476 (2011), 355–359.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 13
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • 13 Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451 (2008), 86–89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 14
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • 2 metabolites, thus enabling higher yield metabolic pathways for fuel and chemical synthesis.
    • 2 metabolites, thus enabling higher yield metabolic pathways for fuel and chemical synthesis.
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.S.2    Liao, J.C.3
  • 16
    • 84883554005 scopus 로고    scopus 로고
    • A reverse glyoxylate shunt to build a non-native route from C-4 to C-2 in Escherichia coli
    • 16 Mainguet, S.E., Gronenberg, L.S., Wong, S.S., Liao, J.C., A reverse glyoxylate shunt to build a non-native route from C-4 to C-2 in Escherichia coli. Metab Eng 19 (2013), 116–127.
    • (2013) Metab Eng , vol.19 , pp. 116-127
    • Mainguet, S.E.1    Gronenberg, L.S.2    Wong, S.S.3    Liao, J.C.4
  • 17
    • 84924958721 scopus 로고    scopus 로고
    • Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization
    • 17 Whitaker, W.B., Sandoval, N.R., Bennett, R.K., Fast, A.G., Papoutsakis, E.T., Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33 (2015), 165–175.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 165-175
    • Whitaker, W.B.1    Sandoval, N.R.2    Bennett, R.K.3    Fast, A.G.4    Papoutsakis, E.T.5
  • 18
    • 84990230977 scopus 로고    scopus 로고
    • 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion
    • The authors exploit the mixotrophic abilities of  Clostridum to increase carbon yields for the production of fuels and chemicals. Mixotrophy is the ability to concurrently use organic and inorganic substrates for growth and metabolism. This work demonstrates the high yield production of acetone using engineered  Clostridium ljungdahlii and co-substrate feedstocks of glucose and hydrogen.
    • 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun, 7, 2016, 12800 The authors exploit the mixotrophic abilities of  Clostridum to increase carbon yields for the production of fuels and chemicals. Mixotrophy is the ability to concurrently use organic and inorganic substrates for growth and metabolism. This work demonstrates the high yield production of acetone using engineered  Clostridium ljungdahlii and co-substrate feedstocks of glucose and hydrogen.
    • (2016) Nat Commun , vol.7 , pp. 12800
    • Jones, S.W.1    Fast, A.G.2    Carlson, E.D.3    Wiedel, C.A.4    Au, J.5    Antoniewicz, M.R.6    Papoutsakis, E.T.7    Tracy, B.P.8
  • 19
    • 20344372708 scopus 로고    scopus 로고
    • Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates
    • 19 Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A., Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308 (2005), 1446–1450.
    • (2005) Science , vol.308 , pp. 1446-1450
    • Huber, G.W.1    Chheda, J.N.2    Barrett, C.J.3    Dumesic, J.A.4
  • 20
    • 34250835050 scopus 로고    scopus 로고
    • Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
    • 20 Roman-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A., Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447 (2007), 982–985.
    • (2007) Nature , vol.447 , pp. 982-985
    • Roman-Leshkov, Y.1    Barrett, C.J.2    Liu, Z.Y.3    Dumesic, J.A.4
  • 21
    • 33745612718 scopus 로고    scopus 로고
    • Phase modifiers promote efficient production of hydroxymethylfurfural from fructose
    • 21 Román-Leshkov, Y., Chheda, J.N., Dumesic, J.A., Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312 (2006), 1933–1937.
    • (2006) Science , vol.312 , pp. 1933-1937
    • Román-Leshkov, Y.1    Chheda, J.N.2    Dumesic, J.A.3
  • 22
    • 79953661553 scopus 로고    scopus 로고
    • One-pot synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite
    • 22 Nikolla, E., Roman-Leshkov, Y., Moliner, M., Davis, M.E., One-pot synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1 (2011), 408–410.
    • (2011) ACS Catal , vol.1 , pp. 408-410
    • Nikolla, E.1    Roman-Leshkov, Y.2    Moliner, M.3    Davis, M.E.4
  • 23
    • 34250811496 scopus 로고    scopus 로고
    • Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural
    • 23 Zhao, H.B., Holladay, J.E., Brown, H., Zhang, Z.C., Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316 (2007), 1597–1600.
    • (2007) Science , vol.316 , pp. 1597-1600
    • Zhao, H.B.1    Holladay, J.E.2    Brown, H.3    Zhang, Z.C.4
  • 26
    • 84977119815 scopus 로고    scopus 로고
    • Mechanistic insight to C–C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites
    • 26 Moteki, T., Flaherty, D.W., Mechanistic insight to C–C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal 6 (2016), 4170–4183.
    • (2016) ACS Catal , vol.6 , pp. 4170-4183
    • Moteki, T.1    Flaherty, D.W.2
  • 27
    • 84874075650 scopus 로고    scopus 로고
    • Mechanism of the catalytic conversion of methanol to hydrocarbons
    • 27 Ilias, S., Bhan, A., Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3 (2013), 18–31.
    • (2013) ACS Catal , vol.3 , pp. 18-31
    • Ilias, S.1    Bhan, A.2
  • 28
    • 0010407817 scopus 로고
    • The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran)
    • 28 Bremner, J.G.M., Keeys, R.K.F., The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran). J Chem Soc 106 (1947), 8–1080.
    • (1947) J Chem Soc , vol.106 , pp. 8-1080
    • Bremner, J.G.M.1    Keeys, R.K.F.2
  • 29
    • 84870022658 scopus 로고    scopus 로고
    • Bimetallic catalysts for upgrading of biomass to fuels and chemicals
    • 29 Alonso, D.M., Wettstein, S.G., Dumesic, J.A., Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41 (2012), 8075–8098.
    • (2012) Chem Soc Rev , vol.41 , pp. 8075-8098
    • Alonso, D.M.1    Wettstein, S.G.2    Dumesic, J.A.3
  • 30
    • 84915817907 scopus 로고    scopus 로고
    • Synergistic effects of alloying and thiolate modification in furfural hydrogenation over Cu-based catalysts
    • 30 Pang, S.H., Love, N.E., Medlin, J.W., Synergistic effects of alloying and thiolate modification in furfural hydrogenation over Cu-based catalysts. J Phys Chem Lett 5 (2014), 4110–4114.
    • (2014) J Phys Chem Lett , vol.5 , pp. 4110-4114
    • Pang, S.H.1    Love, N.E.2    Medlin, J.W.3
  • 32
    • 85015243658 scopus 로고    scopus 로고
    • Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts
    • accepted online 9/19/2016
    • 32 Matsubu, J.C., Zhang, S., DeRita, L., Marinkovic, N.S., Chen, J.G., Graham, G.W., Pan, X., Christopher, P., Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem 9 (2017), 120–127, 10.1038/nchem.2607 accepted online 9/19/2016.
    • (2017) Nat Chem , vol.9 , pp. 120-127
    • Matsubu, J.C.1    Zhang, S.2    DeRita, L.3    Marinkovic, N.S.4    Chen, J.G.5    Graham, G.W.6    Pan, X.7    Christopher, P.8
  • 33
    • 84868610929 scopus 로고    scopus 로고
    • Integration of chemical catalysis with extractive fermentation to produce fuels
    • The authors demonstrate the chemical conversion of aceton–butanol–ethanol fermentation products into long and branched chain fuels and lubricants. This is one of the first examples that effectively couples biological and chemical catalysis. High process yields may be possible because fermentation is used to efficiently convert glucose into reduced reactive intermediates that can be condensed into longer chain hydrocarbons using low-cost heat.
    • 33•• Anbarasan, P., Baer, Z.C., Sreekumar, S., Gross, E., Binder, J.B., Blanch, H.W., Clark, D.S., Toste, F.D., Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491 (2012), 235–239 The authors demonstrate the chemical conversion of aceton–butanol–ethanol fermentation products into long and branched chain fuels and lubricants. This is one of the first examples that effectively couples biological and chemical catalysis. High process yields may be possible because fermentation is used to efficiently convert glucose into reduced reactive intermediates that can be condensed into longer chain hydrocarbons using low-cost heat.
    • (2012) Nature , vol.491 , pp. 235-239
    • Anbarasan, P.1    Baer, Z.C.2    Sreekumar, S.3    Gross, E.4    Binder, J.B.5    Blanch, H.W.6    Clark, D.S.7    Toste, F.D.8
  • 34
    • 84959876975 scopus 로고    scopus 로고
    • Frontiers in microbial 1-butanol and isobutanol production
    • 34 Chen, C.-T., Liao, J.C., Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 363 (2016), 1–13.
    • (2016) FEMS Microbiol Lett , vol.363 , pp. 1-13
    • Chen, C.-T.1    Liao, J.C.2
  • 35
    • 84905395753 scopus 로고    scopus 로고
    • Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors
    • 35 Bormann, S., Baer, Z.C., Sreekumar, S., Kuchenreuther, J.M., Toste, F.D., Blanch, H.W., Clark, D.S., Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metab Eng 25 (2014), 124–130.
    • (2014) Metab Eng , vol.25 , pp. 124-130
    • Bormann, S.1    Baer, Z.C.2    Sreekumar, S.3    Kuchenreuther, J.M.4    Toste, F.D.5    Blanch, H.W.6    Clark, D.S.7
  • 36
    • 84958020053 scopus 로고    scopus 로고
    • Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst
    • 36 Tseng, K.-N.T., Lin, S., Kampf, J.W., Szymczak, N.K., Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst. Chem Commun 52 (2016), 2901–2904.
    • (2016) Chem Commun , vol.52 , pp. 2901-2904
    • Tseng, K.-N.T.1    Lin, S.2    Kampf, J.W.3    Szymczak, N.K.4
  • 37
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • 37 Akhtar, M.K., Turner, N.J., Jones, P.R., Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110 (2013), 87–92.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 87-92
    • Akhtar, M.K.1    Turner, N.J.2    Jones, P.R.3
  • 38
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • 38 Polen, T., Spelberg, M., Bott, M., Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 167 (2013), 75–84.
    • (2013) J Biotechnol , vol.167 , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 39
    • 84931420611 scopus 로고    scopus 로고
    • Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli
    • 39 Yu, J.L., Xia, X.X., Zhong, J.J., Qian, Z.G., Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 111 (2014), 2580–2586.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2580-2586
    • Yu, J.L.1    Xia, X.X.2    Zhong, J.J.3    Qian, Z.G.4
  • 41
    • 84964948762 scopus 로고    scopus 로고
    • cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
    • This work demonstrates the production of adipic acid from an integrated biological and chemical catalysis process.  Pseudomonas putida was used to convert model lignin monomers into muconic acid, which is subsequently converted to adipic acid via metal-catalyzed hydrogenation.
    • 41•• Vardon, D.R., Rorrer, N.A., Salvachua, D., Settle, A.E., Johnson, C.W., Menart, M.J., Cleveland, N.S., Ciesielski, P.N., Steirer, K.X., Dorgan, J.R., et al. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem 18 (2016), 3397–3413 This work demonstrates the production of adipic acid from an integrated biological and chemical catalysis process.  Pseudomonas putida was used to convert model lignin monomers into muconic acid, which is subsequently converted to adipic acid via metal-catalyzed hydrogenation.
    • (2016) Green Chem , vol.18 , pp. 3397-3413
    • Vardon, D.R.1    Rorrer, N.A.2    Salvachua, D.3    Settle, A.E.4    Johnson, C.W.5    Menart, M.J.6    Cleveland, N.S.7    Ciesielski, P.N.8    Steirer, K.X.9    Dorgan, J.R.10
  • 42
    • 84894207909 scopus 로고    scopus 로고
    • Production of lactic acid/lactates from biomass and their catalytic transformations to commodities
    • 42 Maki-Arvela, P., Simakova, I.L., Salmi, T., Murzin, D.Y., Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114 (2014), 1909–1971.
    • (2014) Chem Rev , vol.114 , pp. 1909-1971
    • Maki-Arvela, P.1    Simakova, I.L.2    Salmi, T.3    Murzin, D.Y.4
  • 43
    • 84902186055 scopus 로고    scopus 로고
    • Scalable production of mechanically tunable block polymers from sugar
    • The authors demonstrate an integrated biological and chemical catalysis route for the production of the polymer precursor β-methyl-δ-valerolactone. Engineered  E. coli was used to produce high yields of mevalonate. Dehydration of mevalonate and Pd-catalyzed hydrogenation produces β-methyl-δ-valerolactone, which can subsequently be co-polymerized with lactide to produce block co-polymers.
    • 43•• Xiong, M.Y., Schneiderman, D.K., Bates, F.S., Hillmyer, M.A., Zhang, K.C., Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci U S A 111 (2014), 8357–8362 The authors demonstrate an integrated biological and chemical catalysis route for the production of the polymer precursor β-methyl-δ-valerolactone. Engineered  E. coli was used to produce high yields of mevalonate. Dehydration of mevalonate and Pd-catalyzed hydrogenation produces β-methyl-δ-valerolactone, which can subsequently be co-polymerized with lactide to produce block co-polymers.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 8357-8362
    • Xiong, M.Y.1    Schneiderman, D.K.2    Bates, F.S.3    Hillmyer, M.A.4    Zhang, K.C.5
  • 45
    • 84886431192 scopus 로고    scopus 로고
    • THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass
    • 45 Cai, C.M., Zhang, T.Y., Kumar, R., Wyman, C.E., THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15 (2013), 3140–3145.
    • (2013) Green Chem , vol.15 , pp. 3140-3145
    • Cai, C.M.1    Zhang, T.Y.2    Kumar, R.3    Wyman, C.E.4
  • 46
    • 84930202302 scopus 로고    scopus 로고
    • Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass
    • 46 Nguyen, T.Y., Cai, C.M., Kumar, R., Wyman, C.E., Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8 (2015), 1716–1725.
    • (2015) ChemSusChem , vol.8 , pp. 1716-1725
    • Nguyen, T.Y.1    Cai, C.M.2    Kumar, R.3    Wyman, C.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.