-
2
-
-
84965176222
-
Reweighted wake-sleep
-
Jrg Bornschein and Yoshua Bengio. Reweighted wake-sleep. CoRR, pages-1-1, 2014.
-
(2014)
CoRR
, pp. 1
-
-
Bornschein, J.1
Bengio, Y.2
-
3
-
-
84976859194
-
Likelihood ratio gradient estimation for stochastic systems
-
October
-
Peter W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Commun. ACM, 33(10):75-84, October 1990.
-
(1990)
Commun. ACM
, vol.33
, Issue.10
, pp. 75-84
-
-
Glynn, P.W.1
-
4
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Geoffrey Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
5
-
-
85162005069
-
Online learning for latent dirichlet allocation
-
Matthew D. Hoffman, David M. Blei, and Francis R. Bach. Online learning for latent dirichlet allocation. In NIPS, pages 856-864, 2010.
-
(2010)
NIPS
, pp. 856-864
-
-
Hoffman, M.D.1
Blei, D.M.2
Bach, F.R.3
-
6
-
-
84878919168
-
Stochastic variational inference
-
Matthew D. Hoffman, David M. Blei, Chong Wang, and John William Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.W.4
-
7
-
-
0033225865
-
An introduction to variational methods for graphical models
-
November
-
Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Mach. Learn., 37(2):183-233, November 1999.
-
(1999)
Mach. Learn.
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
9
-
-
84965158671
-
Automatic variational inference in stan
-
A. Kucukelbir, R. Ranganath, A. Gelman, and D. M. Blei. Automatic variational inference in stan. In Advances in Neural Information Processing Systems, 28, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
-
-
Kucukelbir, A.1
Ranganath, R.2
Gelman, A.3
Blei, D.M.4
-
11
-
-
44049116681
-
Connectionist learning of belief networks
-
July
-
Radford M. Neal. Connectionist learning of belief networks. Artif. Intell., 56(1):71-113, July 1992.
-
(1992)
Artif. Intell.
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.M.1
-
12
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
John William Paisley, David M. Blei, and Michael I. Jordan. Variational bayesian inference with stochastic search. In ICML, 2012.
-
(2012)
ICML
-
-
Paisley, J.W.1
Blei, D.M.2
Jordan, M.I.3
-
18
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
12
-
Tim Salimans and David A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Anal., 8(4):837-882, 12 2013.
-
(2013)
Bayesian Anal.
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
21
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
May
-
Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn., 8(3-4):229-256, May 1992.
-
(1992)
Mach. Learn.
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|