-
5
-
-
84976859194
-
Likelihood ratio gradient estimation for stochastic systems
-
P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75-84, 1990.
-
(1990)
Communications of the ACM
, vol.33
, Issue.10
, pp. 75-84
-
-
Glynn, P.W.1
-
7
-
-
84919810318
-
-
arXiv preprint arXiv:1310.8499
-
K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. Deep autoregressive networks. arXiv preprint arXiv:1310.8499, 2013.
-
(2013)
Deep Autoregressive Networks
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
12
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Le Cun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
15
-
-
84937959846
-
Recurrent models of visual attention
-
V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Advances in Neural Information Processing Systems, pages 2204-2212, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2204-2212
-
-
Mnih, V.1
Heess, N.2
Graves, A.3
Kavukcuoglu, K.4
-
18
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
Springer
-
R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, pages 355-368. Springer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
22
-
-
84919793697
-
Deterministic policy gradient algorithms
-
D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.
-
(2014)
ICML
-
-
Silver, D.1
Lever, G.2
Heess, N.3
Degris, T.4
Wierstra, D.5
Riedmiller, M.6
-
23
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
Citeseer
-
R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In NIPS, volume 99, pages 1057-1063. Citeseer, 1999.
-
(1999)
NIPS
, vol.99
, pp. 1057-1063
-
-
Sutton, R.S.1
McAllester, D.A.2
Singh, S.P.3
Mansour, Y.4
-
24
-
-
70349327392
-
Learning model-free robot control by a Monte Carlo EM algorithm
-
N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. Learning model-free robot control by a Monte Carlo EM algorithm. Autonomous Robots, 27(2):123-130, 2009.
-
(2009)
Autonomous Robots
, vol.27
, Issue.2
, pp. 123-130
-
-
Vlassis, N.1
Toussaint, M.2
Kontes, G.3
Piperidis, S.4
-
25
-
-
77957283019
-
Recurrent policy gradients
-
D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal of IGPL, 18(5):620-634, 2010.
-
(2010)
Logic Journal of IGPL
, vol.18
, Issue.5
, pp. 620-634
-
-
Wierstra, D.1
Förster, A.2
Peters, J.3
Schmidhuber, J.4
-
26
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|