-
4
-
-
0029372831
-
The helmholtz machine
-
Dayan, Peter, Hinton, Geoffrey E, Neal, Radford M, and Zemel, Richard S. The helmholtz machine. Neural computation, 7(5):889–904, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
5
-
-
84919796355
-
Deep autoregressive networks
-
Gregor, Karol, Danihelka, Ivo, Mnih, Andriy, Blundell, Charles, and Wierstra, Daan. Deep autoregressive networks. In ICML, 2014.
-
(2014)
ICML
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
7
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E, Mohamed, Abdel-rahman, Jaitly, Navdeep, Senior, Andrew, Vanhoucke, Vincent, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
-
8
-
-
0029652445
-
The”wake-sleep” algorithm for unsupervised neural networks
-
Hinton, Geoffrey E, Dayan, Peter, Frey, Brendan J, and Neal, Radford M. The”wake-sleep” algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
9
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, Diederik P and Welling, Max. Auto-encoding variational bayes. ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
10
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In NIPS, pp. 1097–1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84984663965
-
Difference target propagation
-
Springer
-
Lee, Dong-Hyun, Zhang, Saizheng, Fischer, Asja, and Bengio, Yoshua. Difference target propagation. In Machine Learning and Knowledge Discovery in Databases, pp. 498–515. Springer, 2015.
-
(2015)
Machine Learning and Knowledge Discovery in Databases
, pp. 498-515
-
-
Lee, D.-H.1
Zhang, S.2
Fischer, A.3
Bengio, Y.4
-
12
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, Andriy and Gregor, Karol. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
13
-
-
84937959846
-
Recurrent models of visual attention
-
Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Recurrent models of visual attention. In NIPS, 2014.
-
(2014)
NIPS
-
-
Mnih, V.1
Heess, N.2
Graves, A.3
-
14
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, Radford M. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113, 1992.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.M.1
-
15
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
Paisley, John, Blei, David, and Jordan, Michael. Variational bayesian inference with stochastic search. ICML, 2012.
-
(2012)
ICML
-
-
Paisley, J.1
Blei, D.2
Jordan, M.3
-
17
-
-
85083952074
-
Techniques for learning binary stochastic feedforward neural networks
-
Raiko, Tapani, Berglund, Mathias, Alain, Guillaume, and Dinh, Laurent. Techniques for learning binary stochastic feedforward neural networks. ICLR, 2015.
-
(2015)
ICLR
-
-
Raiko, T.1
Berglund, M.2
Alain, G.3
Dinh, L.4
-
19
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic backpropagation and approximate inference in deep generative models. ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
20
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. Learning representations by backpropagating errors. Nature, 323:533–536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
21
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, Lawrence K, Jaakkola, Tommi, and Jordan, Michael I. Mean field theory for sigmoid belief networks. Journal of artificial intelligence research, 4(1):61–76, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, Issue.1
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.I.3
-
22
-
-
84965157716
-
Gradient estimation using stochastic computation graphs
-
Schulman, John, Heess, Nicolas, Weber, Theophane, and Abbeel, Pieter. Gradient estimation using stochastic computation graphs. NIPS, 2015.
-
(2015)
NIPS
-
-
Schulman, J.1
Heess, N.2
Weber, T.3
Abbeel, P.4
-
23
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.3
-
24
-
-
84898947294
-
Learning stochastic feedforward neural networks
-
Tang, Yichuan and Salakhutdinov, Ruslan. Learning stochastic feedforward neural networks. In NIPS, 2013.
-
(2013)
NIPS
-
-
Tang, Y.1
Salakhutdinov, R.2
-
26
-
-
21444437925
-
The optimal reward baseline for gradient-based reinforcement learning
-
Morgan Kaufmann Publishers Inc
-
Weaver, Lex and Tao, Nigel. The optimal reward baseline for gradient-based reinforcement learning. In UAI, pp. 538–545. Morgan Kaufmann Publishers Inc., 2001.
-
(2001)
UAI
, pp. 538-545
-
-
Weaver, L.1
Tao, N.2
-
27
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|