메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Muprop: Unbiased backpropagation for stochastic neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION ALGORITHMS; DEEP NEURAL NETWORKS; NEURAL NETWORKS; STOCHASTIC MODELS;

EID: 85083953202     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (92)

References (28)
  • 2
  • 7
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E, Mohamed, Abdel-rahman, Jaitly, Navdeep, Senior, Andrew, Vanhoucke, Vincent, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.-R.5    Jaitly, N.6    Senior, A.7    Vanhoucke, V.8
  • 8
    • 0029652445 scopus 로고
    • The”wake-sleep” algorithm for unsupervised neural networks
    • Hinton, Geoffrey E, Dayan, Peter, Frey, Brendan J, and Neal, Radford M. The”wake-sleep” algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 9
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, Diederik P and Welling, Max. Auto-encoding variational bayes. ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 10
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In NIPS, pp. 1097–1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 12
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, Andriy and Gregor, Karol. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 13
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Recurrent models of visual attention. In NIPS, 2014.
    • (2014) NIPS
    • Mnih, V.1    Heess, N.2    Graves, A.3
  • 14
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, Radford M. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113, 1992.
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.M.1
  • 15
    • 84867133463 scopus 로고    scopus 로고
    • Variational Bayesian inference with stochastic search
    • Paisley, John, Blei, David, and Jordan, Michael. Variational bayesian inference with stochastic search. ICML, 2012.
    • (2012) ICML
    • Paisley, J.1    Blei, D.2    Jordan, M.3
  • 17
    • 85083952074 scopus 로고    scopus 로고
    • Techniques for learning binary stochastic feedforward neural networks
    • Raiko, Tapani, Berglund, Mathias, Alain, Guillaume, and Dinh, Laurent. Techniques for learning binary stochastic feedforward neural networks. ICLR, 2015.
    • (2015) ICLR
    • Raiko, T.1    Berglund, M.2    Alain, G.3    Dinh, L.4
  • 19
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic backpropagation and approximate inference in deep generative models. ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 20
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. Learning representations by backpropagating errors. Nature, 323:533–536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 84965157716 scopus 로고    scopus 로고
    • Gradient estimation using stochastic computation graphs
    • Schulman, John, Heess, Nicolas, Weber, Theophane, and Abbeel, Pieter. Gradient estimation using stochastic computation graphs. NIPS, 2015.
    • (2015) NIPS
    • Schulman, J.1    Heess, N.2    Weber, T.3    Abbeel, P.4
  • 23
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.3
  • 24
    • 84898947294 scopus 로고    scopus 로고
    • Learning stochastic feedforward neural networks
    • Tang, Yichuan and Salakhutdinov, Ruslan. Learning stochastic feedforward neural networks. In NIPS, 2013.
    • (2013) NIPS
    • Tang, Y.1    Salakhutdinov, R.2
  • 26
    • 21444437925 scopus 로고    scopus 로고
    • The optimal reward baseline for gradient-based reinforcement learning
    • Morgan Kaufmann Publishers Inc
    • Weaver, Lex and Tao, Nigel. The optimal reward baseline for gradient-based reinforcement learning. In UAI, pp. 538–545. Morgan Kaufmann Publishers Inc., 2001.
    • (2001) UAI , pp. 538-545
    • Weaver, L.1    Tao, N.2
  • 27
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.