메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1195-1204

Black-box policy search with probabilistic programs

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; STOCHASTIC SYSTEMS;

EID: 85002089697     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (44)
  • 1
    • 0012312949 scopus 로고    scopus 로고
    • State abstraction for programmable reinforcement learning agents
    • D. Andre and S. J. Russell. State Abstraction for Programmable Reinforcement Learning Agents. In AAAI, 2002.
    • (2002) AAAI
    • Andre, D.1    Russell, S.J.2
  • 8
    • 85167430664 scopus 로고    scopus 로고
    • High-quality policies for the canadian traveler’s problem
    • P. Eyerich, T. Keller, and M. Helmert. High-quality policies for the Canadian traveler’s problem. In AAAI, 2010.
    • (2010) AAAI
    • Eyerich, P.1    Keller, T.2    Helmert, M.3
  • 16
    • 78751705157 scopus 로고    scopus 로고
    • New inference strategies for solving markov decision processes using reversible jump MCMC
    • AUAI Press
    • M. W. Hoffman, H. Kueck, N. de Freitas, and A. Doucet. New inference strategies for solving Markov decision processes using reversible jump MCMC. In Uncertainty in Artificial Intelligence, pages 223–231. AUAI Press, 2009b.
    • (2009) Uncertainty in Artificial Intelligence , pp. 223-231
    • Hoffman, M.W.1    Kueck, H.2    de Freitas, N.3    Doucet, A.4
  • 17
    • 29044440299 scopus 로고    scopus 로고
    • Path integrals and symmetry breaking for optimal control theory
    • H. J. Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of Statistical Mechanics: Theory and Experiment, 2005(11), 2005. P11011.
    • (2005) Journal of Statistical Mechanics: Theory and Experiment , vol.2005 , Issue.11 , pp. P11011
    • Kappen, H.J.1
  • 27
    • 84959387419 scopus 로고    scopus 로고
    • Planning in discrete and continuous markov decision processes by probabilistic programming
    • Cham, Springer International Publishing
    • D. Nitti, V. Belle, and L. De Raedt. Planning in Discrete and Continuous Markov Decision Processes by Probabilistic Programming. In ECML PKDD, Lecture Notes in Computer Science, pages 327–342, Cham, 2015. Springer International Publishing.
    • (2015) ECML PKDD, Lecture Notes in Computer Science , pp. 327-342
    • Nitti, D.1    Belle, V.2    De Raedt, L.3
  • 29
    • 59349087586 scopus 로고    scopus 로고
    • Using programming language theory to make automatic differentiation sound and efficient
    • B. A. Pearlmutter and J. M. Siskind. Using programming language theory to make automatic differentiation sound and efficient. Advances in Automatic Differentiation, pages 79–90, 2008.
    • (2008) Advances in Automatic Differentiation , pp. 79-90
    • Pearlmutter, B.A.1    Siskind, J.M.2
  • 34
    • 31144465830 scopus 로고    scopus 로고
    • Heuristic search value iteration for POMDPs
    • Arlington, Virginia, United States, AUAI Press
    • T. Smith and R. Simmons. Heuristic Search Value Iteration for POMDPs. In Uncertainty in Artificial Intelligence, pages 520–527, Arlington, Virginia, United States, 2004. AUAI Press.
    • (2004) Uncertainty in Artificial Intelligence , pp. 520-527
    • Smith, T.1    Simmons, R.2
  • 37
    • 67650915125 scopus 로고    scopus 로고
    • Efficient computation of optimal actions
    • E. Todorov. Efficient computation of optimal actions. Proc. Nat. Acad. Sci. of America, 106(28):11478–11483, 2009.
    • (2009) Proc. Nat. Acad. Sci. of America , vol.106 , Issue.28 , pp. 11478-11483
    • Todorov, E.1
  • 38
    • 51349153274 scopus 로고    scopus 로고
    • Probabilistic inference for solving (PO)MDPs
    • M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving (PO)MDPs. Neural Computation, 31(December):357–373, 2006.
    • (2006) Neural Computation , vol.31 , Issue.December , pp. 357-373
    • Toussaint, M.1    Harmeling, S.2    Storkey, A.3
  • 39
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 1(1âĂŞ2):1–305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 40
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.