-
1
-
-
85014597986
-
Functional regression models for location, scale and shape with application to stock returns
-
Friedl, Wagner, (eds), a),. In, eds.,., Linz, July 6–10, 2015, pages
-
Brockhaus S, Fuest A, Mayr A, Greven S, (2015a) Functional regression models for location, scale and shape with application to stock returns. In Friedl H, Wagner H, eds. Proceedings of the 30th International Workshop on Statistical Modelling, vol. 1, Linz, July 6–10, 2015, pages 117–22.
-
(2015)
Proceedings of the 30th International Workshop on Statistical Modelling
, vol.1
, pp. 117-122
-
-
Brockhaus, S.1
Fuest, A.2
Mayr, A.3
Greven, S.4
-
2
-
-
85014684671
-
-
arXiv preprint arXiv:1605. 04281. a
-
Brockhaus S, Fuest A, Mayr A, Greven S, (2016a) Signal regression models for loca- tion, scale and shape with an application to stock returns. arXiv preprint arXiv:1605. 04281.
-
(2016)
Signal regression models for loca- tion, scale and shape with an application to stock returns
-
-
Brockhaus, S.1
Fuest, A.2
Mayr, A.3
Greven, S.4
-
3
-
-
84969793663
-
Boosting flexible functional regre- ssion models with a high number of functional historical effects
-
b),.,. (accessed on 17 November 2016)
-
Brockhaus S, Melcher M, Leisch F, Greven S, (2016b) Boosting flexible functional regre- ssion models with a high number of functional historical effects. Statistics and Computing. Available at http://link.springer.com/article/10.1007/s11222-016-9662-1. (accessed on 17 November 2016).
-
(2016)
Statistics and Computing
-
-
Brockhaus, S.1
Melcher, M.2
Leisch, F.3
Greven, S.4
-
5
-
-
84930412651
-
The functional linear array model
-
b)
-
Brockhaus S, Scheipl F, Hothorn T, Greven S, (2015b) The functional linear array model. Statistical Modelling, 15, 279–300.
-
(2015)
Statistical Modelling
, vol.15
, pp. 279-300
-
-
Brockhaus, S.1
Scheipl, F.2
Hothorn, T.3
Greven, S.4
-
6
-
-
41549141939
-
Boosting algo- rithms: Regularization, prediction and model fitting
-
Bühlmann P, Hothorn T, (2007) Boosting algo- rithms: Regularization, prediction and model fitting. Statistical Science, 22, 477–505.
-
(2007)
Statistical Science
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
7
-
-
0002664611
-
Functional linear model
-
Cardot H, Ferraty F, Sarda P, (1999) Functional linear model. Statistics & Probability Letters, 45, 11–22.
-
(1999)
Statistics & Probability Letters
, vol.45
, pp. 11-22
-
-
Cardot, H.1
Ferraty, F.2
Sarda, P.3
-
8
-
-
84957882244
-
Functional linear mixed models for irregularly or sparsely sampled data
-
Cederbaum J, Pouplier M, Hoole P, Greven S, (2016) Functional linear mixed models for irregularly or sparsely sampled data. Statistical Modelling, 16, 67–88.
-
(2016)
Statistical Modelling
, vol.16
, pp. 67-88
-
-
Cederbaum, J.1
Pouplier, M.2
Hoole, P.3
Greven, S.4
-
9
-
-
33644769535
-
-
) Gene- ralized linear array models with alications to multidimensional smoothing., 68
-
Currie ID, Durban M, Eilers PH, (2006) Gene- ralized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 259–80.
-
(2006)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, pp. 259-280
-
-
Currie, I.D.1
Durban, M.2
Eilers, P.H.3
-
11
-
-
79960273349
-
Multilevel functional principal component analysis
-
Di C-Z, Crainiceanu CM, Caffo BS, Punjabi NM, (2009) Multilevel functional principal component analysis. The Annals of Applied Statistics, 3, 458–88.
-
(2009)
The Annals of Applied Statistics
, vol.3
, pp. 458-488
-
-
Di, C.-Z.1
Crainiceanu, C.M.2
Caffo, B.S.3
Punjabi, N.M.4
-
12
-
-
84908687122
-
Shape and object data analysis
-
Dryden IL, (2014) Shape and object data analysis. Biometrical Journal, 56, 758–60.
-
(2014)
Biometrical Journal
, vol.56
, pp. 758-760
-
-
Dryden, I.L.1
-
13
-
-
25444532788
-
Flexible smoothing with B-splines and penalties
-
Eilers P, Marx B, (1996) Flexible smoothing with B-splines and penalties. Statistical Sciences, 11, 89–121.
-
(1996)
Statistical Sciences
, vol.11
, pp. 89-121
-
-
Eilers, P.1
Marx, B.2
-
14
-
-
0037613485
-
Multivariate calibration with temperature interaction using two-dimensional penalized signal regression
-
Eilers PH, Marx BD, (2003) Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and intelligent laboratory systems, 66, 159–74.
-
(2003)
Chemometrics and intelligent laboratory systems
, vol.66
, pp. 159-174
-
-
Eilers, P.H.1
Marx, B.D.2
-
16
-
-
84956704476
-
Spatial regression models over two-dimensional manifolds
-
Ettinger B, Perotto S, Sangalli LM, (2016) Spatial regression models over two-dimensional manifolds. Biometrika, 103, 71–88.
-
(2016)
Biometrika
, vol.103
, pp. 71-88
-
-
Ettinger, B.1
Perotto, S.2
Sangalli, L.M.3
-
17
-
-
84868156165
-
Statistical computing in functional data analysis: The R package
-
, (accessed on 17 November 2016)
-
Febrero-Bande M, Oviedo de la Fuente M, (2012) Statistical computing in functional data analysis: The R package fda.usc. Journal of Statistical Software, 51, 1–28. Available at http://www.jstatsoft.org/v51/i04/ (accessed on 17 November 2016).
-
(2012)
Journal of Statistical Software
, vol.51
, pp. 1-28
-
-
Febrero-Bande, M.1
Oviedo de la Fuente, M.2
-
18
-
-
79960127235
-
Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
-
Fenske N, Kneib T, Hothorn T, (2011) Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. Journal of the American Statistical Association, 106, 494–510.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
-
20
-
-
84906083873
-
Penalized scalar-on-functions regression with interaction term
-
Fuchs K, Scheipl F, Greven S, (2015) Penalized scalar-on-functions regression with interaction term. Computational Statistics & Data Analysis, 81, 38–51.
-
(2015)
Computational Statistics & Data Analysis
, vol.81
, pp. 38-51
-
-
Fuchs, K.1
Scheipl, F.2
Greven, S.3
-
21
-
-
77956916093
-
Distributed lag non-linear models
-
Gasparrini A, Armstrong B, Kenward MG, (2010) Distributed lag non-linear models. Statistics in Medicine, 29, 2224–34.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 2224-2234
-
-
Gasparrini, A.1
Armstrong, B.2
Kenward, M.G.3
-
22
-
-
84879076970
-
Longitudinal scalar-on- functions regression with application to tractography data
-
a)
-
Gertheiss J, Goldsmith J, Crainiceanu C, Greven S, (2013a) Longitudinal scalar-on- functions regression with application to tractography data. Biostatistics, 14, 447–61.
-
(2013)
Biostatistics
, vol.14
, pp. 447-461
-
-
Gertheiss, J.1
Goldsmith, J.2
Crainiceanu, C.3
Greven, S.4
-
23
-
-
84900855077
-
Variable selection in generalized functional linear models
-
b)
-
Gertheiss J, Maity A, Staicu A-M, (2013b) Variable selection in generalized functional linear models. Stat, 2, 86–101.
-
(2013)
Stat
, vol.2
, pp. 86-101
-
-
Gertheiss, J.1
Maity, A.2
Staicu, A.-M.3
-
24
-
-
84941568863
-
Warped functional regression
-
Gervini D, (2015) Warped functional regression. Biometrika, 102, 1–14.
-
(2015)
Biometrika
, vol.102
, pp. 1-14
-
-
Gervini, D.1
-
25
-
-
83455181653
-
Penalized functional regression
-
Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D, (2012) Penalized functional regression. Journal of Computational and Graphical Statistics, 20, 830–51.
-
(2012)
Journal of Computational and Graphical Statistics
, vol.20
, pp. 830-851
-
-
Goldsmith, J.1
Bobb, J.2
Crainiceanu, C.M.3
Caffo, B.4
Reich, D.5
-
26
-
-
84875947724
-
Corrected confidence bands for functional data using principal components
-
Goldsmith J, Greven S, Crainiceanu CM, (2013) Corrected confidence bands for functional data using principal components. Biometrics, 69, 41–51.
-
(2013)
Biometrics
, vol.69
, pp. 41-51
-
-
Goldsmith, J.1
Greven, S.2
Crainiceanu, C.M.3
-
27
-
-
84901808735
-
Smooth scalar-on-image regression via spatial Bayesian variable selection
-
Goldsmith J, Huang L, Crainiceanu CM, (2014) Smooth scalar-on-image regression via spatial Bayesian variable selection. Journal of Computational and Graphical Statistics, 23, 46–64.
-
(2014)
Journal of Computational and Graphical Statistics
, vol.23
, pp. 46-64
-
-
Goldsmith, J.1
Huang, L.2
Crainiceanu, C.M.3
-
28
-
-
79960998417
-
Functional regression via variational Bayes
-
Goldsmith J, Wand MP, Crainiceanu CM, (2011) Functional regression via variational Bayes. Electronic Journal of Statistics, 5, 572–602.
-
(2011)
Electronic Journal of Statistics
, vol.5
, pp. 572-602
-
-
Goldsmith, J.1
Wand, M.P.2
Crainiceanu, C.M.3
-
29
-
-
84931577988
-
Generalized multilevel function-on-scalar regression and principal component analysis
-
Goldsmith J, Zipunnikov V, Schrack J, (2015) Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics, 71, 344–53.
-
(2015)
Biometrics
, vol.71
, pp. 344-353
-
-
Goldsmith, J.1
Zipunnikov, V.2
Schrack, J.3
-
30
-
-
79953051021
-
Longitudinal functional principal component analysis
-
Greven S, Crainiceanu CM, Caffo BS, Reich D, (2010) Longitudinal functional principal component analysis. Electronic Journal of Statistics, 4, 1022–54.
-
(2010)
Electronic Journal of Statistics
, vol.4
, pp. 1022-1054
-
-
Greven, S.1
Crainiceanu, C.M.2
Caffo, B.S.3
Reich, D.4
-
31
-
-
64249145967
-
Restricted likelihood ratio testing for zero variance components in linear mixed models
-
Greven S, Crainiceanu CM, Küchenhoff H, Peters A, (2008) Restricted likelihood ratio testing for zero variance components in linear mixed models. Journal of Computational and Graphical Statistics, 17, 870–91.
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, pp. 870-891
-
-
Greven, S.1
Crainiceanu, C.M.2
Küchenhoff, H.3
Peters, A.4
-
32
-
-
84936773585
-
Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed- effects modeling of mandarin Chinese
-
Hadjipantelis PZ, Aston JA, Müller H-G, Evans JP, (2015) Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed- effects modeling of mandarin Chinese. Journal of the American Statistical Association, 110, 545–59.
-
(2015)
Journal of the American Statistical Association
, vol.110
, pp. 545-559
-
-
Hadjipantelis, P.Z.1
Aston, J.A.2
Müller, H.-G.3
Evans, J.P.4
-
34
-
-
0000467952
-
Discussion of ‘A statistical view of some chemometrics reg- ression tools,’ by I. E. Frank and J. H. Friedman
-
Hastie T, Mallows R, (1993) Discussion of ‘A statistical view of some chemometrics reg- ression tools,’ by I. E. Frank and J. H. Friedman. Technometrics, 35, 140–43.
-
(1993)
Technometrics
, vol.35
, pp. 140-143
-
-
Hastie, T.1
Mallows, R.2
-
36
-
-
0003684449
-
-
New York, Springer
-
Hastie TJ, Tibshirani RJ, Friedman JH, (2011) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.
-
(2011)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.J.1
Tibshirani, R.J.2
Friedman, J.H.3
-
37
-
-
85014606964
-
-
The University of Texas M.D. Anderson Cancer Center, version 3.0 edition, (accessed on 16 December 2016)
-
Herrick R, (2015) WFMM. The University of Texas M.D. Anderson Cancer Center, version 3.0 edition. Available at https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=70 (accessed on 16 December 2016)
-
(2015)
WFMM
-
-
Herrick, R.1
-
38
-
-
80053581322
-
A framework for unbiased model selection based on boosting
-
Hofner B, Hothorn T, Kneib T, Schmid M, (2012) A framework for unbiased model selection based on boosting. Journal of Computational and Graphical Statistics, 20, 956–71.
-
(2012)
Journal of Computational and Graphical Statistics
, vol.20
, pp. 956-971
-
-
Hofner, B.1
Hothorn, T.2
Kneib, T.3
Schmid, M.4
-
41
-
-
84881622205
-
-
R package version 2.6-0. (accessed on 22 November 2016)
-
Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B, (2016) mboost: Model-Based Boosting. R package version 2.6-0. Available at http://CRAN.R-project.org/package=mboost (accessed on 22 November 2016).
-
(2016)
mboost: Model-Based Boosting
-
-
Hothorn, T.1
Buehlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
42
-
-
84891832147
-
Conditional transformation models
-
Hothorn T, Kneib T, Bühlmann P, (2014) Conditional transformation models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 3–27.
-
(2014)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.76
, pp. 3-27
-
-
Hothorn, T.1
Kneib, T.2
Bühlmann, P.3
-
43
-
-
84963999094
-
-
R package version 0.1-15. (accessed on 22 November 2016)
-
Huang L, Scheipl F, Goldsmith J, Gellar J, Harezlak J, McLean MW, Swihart B, Xiao L, Crainiceanu C, Reiss P, (2016) refund: Regression with Functional Data. R package version 0.1-15. Available at https://CRAN.R-project.org/package=refund. (accessed on 22 November 2016).
-
(2016)
Refund: Regression with Functional Data
-
-
Huang, L.1
Scheipl, F.2
Goldsmith, J.3
Gellar, J.4
Harezlak, J.5
McLean, M.W.6
Swihart, B.7
Xiao, L.8
Crainiceanu, C.9
Reiss, P.10
-
44
-
-
84930948325
-
Penalized function-on-function regression
-
Ivanescu AE, Staicu A-M, Scheipl F, Greven S, (2015) Penalized function-on-function regression. Computational Statistics, 30, 539–68.
-
(2015)
Computational Statistics
, vol.30
, pp. 539-568
-
-
Ivanescu, A.E.1
Staicu, A.-M.2
Scheipl, F.3
Greven, S.4
-
45
-
-
0001699048
-
Principal component models for sparse functional data
-
James GM, Hastie TJ, Sugar CA, (2000) Principal component models for sparse functional data. Biometrika, 87, 587–602.
-
(2000)
Biometrika
, vol.87
, pp. 587-602
-
-
James, G.M.1
Hastie, T.J.2
Sugar, C.A.3
-
48
-
-
66949120727
-
Variable selection and model choice in geoadditive regression models
-
Kneib T, Hothorn T, Tutz G, (2009) Variable selection and model choice in geoadditive regression models. Biometrics, 65, 626–34.
-
(2009)
Biometrics
, vol.65
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
49
-
-
84925105967
-
-
Cambridge, Cambridge University Press
-
Koenker R, (2005) Quantile Regression. Cambridge: Cambridge University Press.
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
53
-
-
84857058351
-
Coverage proper- ties of confidence intervals for generalized additive model components
-
Marra G, Wood SN, (2012) Coverage proper- ties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39, 53–74.
-
(2012)
Scandinavian Journal of Statistics
, vol.39
, pp. 53-74
-
-
Marra, G.1
Wood, S.N.2
-
54
-
-
84906729542
-
Overview of object oriented data analysis
-
Marron JS, Alonso AM, (2014) Overview of object oriented data analysis. Biometrical Journal, 56, 732–53.
-
(2014)
Biometrical Journal
, vol.56
, pp. 732-753
-
-
Marron, J.S.1
Alonso, A.M.2
-
55
-
-
84908673872
-
Statistics of time warpings and phase variations
-
Marron JS, Ramsay JO, Sangalli LM, Srivastava A, (2014) Statistics of time warpings and phase variations. Electronic Journal of Statistics, 8, 1697–702.
-
(2014)
Electronic Journal of Statistics
, vol.8
, pp. 1697-1702
-
-
Marron, J.S.1
Ramsay, J.O.2
Sangalli, L.M.3
Srivastava, A.4
-
56
-
-
0033079479
-
Generalized linear regression on sampled signals and curves: A P-spline approach
-
Marx BD, Eilers PH, (1999) Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics, 41, 1–13.
-
(1999)
Technometrics
, vol.41
, pp. 1-13
-
-
Marx, B.D.1
Eilers, P.H.2
-
57
-
-
13444257535
-
Multidimensional penalized signal regression
-
Marx BD, Eilers PH, (2005) Multidimensional penalized signal regression. Technometrics, 47, 13–22.
-
(2005)
Technometrics
, vol.47
, pp. 13-22
-
-
Marx, B.D.1
Eilers, P.H.2
-
58
-
-
84859815011
-
Generalized additive models for location, scale and shape for high dimensional data—A flexible approach based on boosting
-
Mayr A, Fenske N, Hofner B, Kneib T, Schmid M, (2012) Generalized additive models for location, scale and shape for high dimensional data—A flexible approach based on boosting. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61, 403–27.
-
(2012)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.61
, pp. 403-427
-
-
Mayr, A.1
Fenske, N.2
Hofner, B.3
Kneib, T.4
Schmid, M.5
-
59
-
-
84938421299
-
Restricted likelihood ratio tests for linearity in scalar-on-function regression
-
McLean MW, Hooker G, Ruppert D, (2015) Restricted likelihood ratio tests for linearity in scalar-on-function regression. Statistics and Computing, 25, 997–1008.
-
(2015)
Statistics and Computing
, vol.25
, pp. 997-1008
-
-
McLean, M.W.1
Hooker, G.2
Ruppert, D.3
-
60
-
-
84901804822
-
Functional generalized additive models
-
McLean MW, Hooker G, Staicu A-M, Scheipl F, Ruppert D, (2014) Functional generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–69.
-
(2014)
Journal of Computational and Graphical Statistics
, vol.23
, pp. 249-269
-
-
McLean, M.W.1
Hooker, G.2
Staicu, A.-M.3
Scheipl, F.4
Ruppert, D.5
-
62
-
-
0001500115
-
Functions of positive and negative type, and their connection with the theory of integral equations
-
Mercer J, (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London. Series A, 209, 415–46.
-
(1909)
Philosophical Transactions of the Royal Society of London. Series A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
63
-
-
84941743821
-
Bayesian function-on- function regression for multilevel functional data
-
Meyer MJ, Coull BA, Versace F, Cinciripini P, Morris JS, (2015) Bayesian function-on- function regression for multilevel functional data. Biometrics, 71, 563–74.
-
(2015)
Biometrics
, vol.71
, pp. 563-574
-
-
Meyer, M.J.1
Coull, B.A.2
Versace, F.3
Cinciripini, P.4
Morris, J.S.5
-
65
-
-
33846090391
-
Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study
-
Morris JS, Arroyo C, Coull BA, Ryan LM, Herrick R, Gortmaker SL, (2006) Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study. Journal of the American Statistical Association, 101, 1352–64.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 1352-1364
-
-
Morris, J.S.1
Arroyo, C.2
Coull, B.A.3
Ryan, L.M.4
Herrick, R.5
Gortmaker, S.L.6
-
66
-
-
80054689503
-
Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
-
Morris JS, Baladandayuthapani V, Herrick RC, Sanna P, Gutstein H, (2011) Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. The Annals of Applied Statistics, 5, 894–923.
-
(2011)
The Annals of Applied Statistics
, vol.5
, pp. 894-923
-
-
Morris, J.S.1
Baladandayuthapani, V.2
Herrick, R.C.3
Sanna, P.4
Gutstein, H.5
-
67
-
-
33644782020
-
Wavelet-based functional mixed models
-
Morris JS, Carroll RJ, (2006) Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B, 68, 179–99.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 179-199
-
-
Morris, J.S.1
Carroll, R.J.2
-
69
-
-
84920972636
-
Flexible dis- tributed lags for modelling earthquake data
-
Obermeier V, Scheipl F, Heumann C, Wassermann J, Küchenhoff H, (2015) Flexible dis- tributed lags for modelling earthquake data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64, 395–412.
-
(2015)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.64
, pp. 395-412
-
-
Obermeier, V.1
Scheipl, F.2
Heumann, C.3
Wassermann, J.4
Küchenhoff, H.5
-
70
-
-
84972545853
-
A statistical perspective on ill-posed inverse problems
-
O'Sullivan F, (1986) A statistical perspective on ill-posed inverse problems. Statistical Science, 1, 502–18.
-
(1986)
Statistical Science
, vol.1
, pp. 502-518
-
-
O'Sullivan, F.1
-
71
-
-
72449195207
-
A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data
-
Peng J, Paul D, (2012) A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data. Journal of Compu- tational and Graphical Statistics, 18, 995–1015.
-
(2012)
Journal of Compu- tational and Graphical Statistics
, vol.18
, pp. 995-1015
-
-
Peng, J.1
Paul, D.2
-
72
-
-
84971620376
-
-
R package version 4-6. (accessed on 23 November 2016)
-
Plummer M, (2016) rjags: Bayesian Graphical Models Using MCMC. R package version 4-6. Available at https://CRAN.R-project.org/package=rjags. (accessed on 23 November 2016).
-
(2016)
rjags: Bayesian Graphical Models Using MCMC
-
-
Plummer, M.1
-
77
-
-
84969844589
-
Estimating variance components in functional linear models with applications to genetic heritability
-
Reimherr M, Nicolae D, (2016) Estimating variance components in functional linear models with applications to genetic heritability. Journal of the American Statis- tical Association, 111, 407–22.
-
(2016)
Journal of the American Statis- tical Association
, vol.111
, pp. 407-422
-
-
Reimherr, M.1
Nicolae, D.2
-
78
-
-
35348906983
-
Functional principal component regression and functional partial least squares
-
Reiss PT, Ogden RT, (2007) Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984–96.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 984-996
-
-
Reiss, P.T.1
Ogden, R.T.2
-
80
-
-
77956302041
-
Fast function-on-scalar regression with penalized basis expansions
-
Reiss PT, Huang L, Mennes M, (2010) Fast function-on-scalar regression with penalized basis expansions. The International Journal of Biostatistics, 6, 1557–4679.
-
(2010)
The International Journal of Biostatistics
, vol.6
, pp. 1557-4679
-
-
Reiss, P.T.1
Huang, L.2
Mennes, M.3
-
82
-
-
35348906983
-
Functional prin- cipal component regression and functional partial least squares
-
Reiss PT, Ogden RT, (2007) Functional prin- cipal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984–96.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 984-996
-
-
Reiss, P.T.1
Ogden, R.T.2
-
83
-
-
18544382833
-
Generalized additive models for location, scale and shape
-
Rigby RA, Stasinopoulos DM, (2005) Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54, 507–54.
-
(2005)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.54
, pp. 507-554
-
-
Rigby, R.A.1
Stasinopoulos, D.M.2
-
85
-
-
84973397855
-
Generalized functional additive mixed models
-
Scheipl F, Gertheiss J, Greven S, (2016) Generalized functional additive mixed models. Electronic Journal of Statistics, 10, 1455–92.
-
(2016)
Electronic Journal of Statistics
, vol.10
, pp. 1455-1492
-
-
Scheipl, F.1
Gertheiss, J.2
Greven, S.3
-
86
-
-
84964047394
-
Identifiability in penalized function-on-function regression models
-
Scheipl F, Greven S, (2016) Identifiability in penalized function-on-function regression models. Electronic Journal of Statistics, 10, 495–526.
-
(2016)
Electronic Journal of Statistics
, vol.10
, pp. 495-526
-
-
Scheipl, F.1
Greven, S.2
-
87
-
-
40249103367
-
Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
-
Scheipl F, Greven S, Küchenhoff H, (2008) Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52, 3283–99.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, pp. 3283-3299
-
-
Scheipl, F.1
Greven, S.2
Küchenhoff, H.3
-
88
-
-
84931084660
-
Functional additive mixed models
-
Scheipl F, Staicu A-M, Greven S, (2015) Functional additive mixed models. Journal of Computational and Graphical Statistics, 24, 477–501.
-
(2015)
Journal of Computational and Graphical Statistics
, vol.24
, pp. 477-501
-
-
Scheipl, F.1
Staicu, A.-M.2
Greven, S.3
-
93
-
-
34548459917
-
Gaussian process functional regression modeling for batch data
-
Shi JQ, Wang B, Murray-Smith R, Titterington M, (2007) Gaussian process functional regression modeling for batch data. Biometrics, 63, 714–23.
-
(2007)
Biometrics
, vol.63
, pp. 714-723
-
-
Shi, J.Q.1
Wang, B.2
Murray-Smith, R.3
Titterington, M.4
-
94
-
-
84961291511
-
Structured functional principal component analysis
-
Shou H, Zipunnikov V, Crainiceanu CM, Greven S, (2015) Structured functional principal component analysis. Biometrics, 71, 247–57.
-
(2015)
Biometrics
, vol.71
, pp. 247-257
-
-
Shou, H.1
Zipunnikov, V.2
Crainiceanu, C.M.3
Greven, S.4
-
95
-
-
84920465588
-
Likelihood ratio tests for dependent data with applications to longitudinal and functional data analysis
-
Staicu A-M, Li Y, Crainiceanu CM, Ruppert D, (2014) Likelihood ratio tests for dependent data with applications to longitudinal and functional data analysis. Scandinavian Journal of Statistics, 41, 932–49.
-
(2014)
Scandinavian Journal of Statistics
, vol.41
, pp. 932-949
-
-
Staicu, A.-M.1
Li, Y.2
Crainiceanu, C.M.3
Ruppert, D.4
-
97
-
-
84918504141
-
Restricted likelihood ratio tests for functional effects in the functional linear model
-
Swihart BJ, Goldsmith J, Crainiceanu CM, (2014) Restricted likelihood ratio tests for functional effects in the functional linear model. Technometrics, 56, 483–93.
-
(2014)
Technometrics
, vol.56
, pp. 483-493
-
-
Swihart, B.J.1
Goldsmith, J.2
Crainiceanu, C.M.3
-
98
-
-
84944112134
-
Interaction models for functional regression
-
Usset J, Staicu A-M, Maity A, (2016) Interaction models for functional regression. Computational Statistics & Data Analysis, 94, 317–30.
-
(2016)
Computational Statistics & Data Analysis
, vol.94
, pp. 317-330
-
-
Usset, J.1
Staicu, A.-M.2
Maity, A.3
-
99
-
-
77949774437
-
Bayesian functional principal components analysis for binary and count data
-
Van der Linde A, (2009) Bayesian functional principal components analysis for binary and count data. Advances in Statistical Analysis, 93, 307–33.
-
(2009)
Advances in Statistical Analysis
, vol.93
, pp. 307-333
-
-
Van der Linde, A.1
-
101
-
-
84907522902
-
Generalized Gaussian process regression model for non-Gaussian functional data
-
Wang B, Shi JQ, (2014) Generalized Gaussian process regression model for non-Gaussian functional data. Journal of the American Statistical Association, 109, 1123–33.
-
(2014)
Journal of the American Statistical Association
, vol.109
, pp. 1123-1133
-
-
Wang, B.1
Shi, J.Q.2
-
102
-
-
50449109596
-
Object-oriented data analysis: Sets of trees
-
Wang H, Marron J, (2007) Object-oriented data analysis: Sets of trees. The Annals of Statistics, 35, 1849–73.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 1849-1873
-
-
Wang, H.1
Marron, J.2
-
103
-
-
84973376001
-
Review of functional data analysis
-
Wang J-L, Chiou J-M, Mueller H-G, (2016) Review of functional data analysis. Annual Review of Statistics and Its Application, 3, 257–95.
-
(2016)
Annual Review of Statistics and Its Application
, vol.3
, pp. 257-295
-
-
Wang, J.-L.1
Chiou, J.-M.2
Mueller, H.-G.3
-
105
-
-
33645690420
-
Low-rank scale-invariant tensor product smooths for generalized additive mixed models
-
b)
-
Wood SN, (2006b) Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62, 1025–36.
-
(2006)
Biometrics
, vol.62
, pp. 1025-1036
-
-
Wood, S.N.1
-
106
-
-
78650862532
-
Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
-
Wood SN, (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B, 73, 3–36.
-
(2011)
Journal of the Royal Statistical Society: Series B
, vol.73
, pp. 3-36
-
-
Wood, S.N.1
-
107
-
-
84890397927
-
A simple test for random effects in regression models
-
Wood SN, (2013) A simple test for random effects in regression models. Biometrika, 100, 1005–10.
-
(2013)
Biometrika
, vol.100
, pp. 1005-1010
-
-
Wood, S.N.1
-
108
-
-
85055753151
-
Just another Gibbs additive modeller: Interfacing JAGS and mgcv
-
a),., (accessed on 23 November 2016)
-
Wood SN, (2016a) Just another Gibbs additive modeller: Interfacing JAGS and mgcv. arXiv preprint arXiv:1602.02539. Available at https://arxiv.org/abs/1602.02539 (accessed on 23 November 2016).
-
(2016)
arXiv preprint arXiv:1602.02539
-
-
Wood, S.N.1
-
110
-
-
85018208819
-
Generalized additive models for gigadata: Modelling the UK black smoke network daily data
-
Wood SN, Li Z, Shaddick G, Augustin NH, (2016a) Generalized additive models for gigadata: Modelling the UK black smoke network daily data. Journal of the Ameri- can Statistical Association. Available at http://amstat.tandfonline.com/doi/abs/10.1080/01621459.2016.1195744
-
(2016)
Journal of the Ameri- can Statistical Association
-
-
Wood, S.N.1
Li, Z.2
Shaddick, G.3
Augustin, N.H.4
-
111
-
-
85010676878
-
Smoothing parameter and model selection for general smooth models
-
b),., (accessed on 23 November 2016)
-
Wood SN, Pya N, Säfken B, (2016b) Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association. Available at http://arxiv.org/abs/1511.03864 (accessed on 23 November 2016).
-
(2016)
Journal of the American Statistical Association
-
-
Wood, S.N.1
Pya, N.2
Säfken, B.3
-
112
-
-
19744375466
-
Functional data analysis for sparse longitudinal data
-
a)
-
Yao F, Müller H, Wang J, (2005a) Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577–90.
-
(2005)
Journal of the American Statistical Association
, vol.100
, pp. 577-590
-
-
Yao, F.1
Müller, H.2
Wang, J.3
-
113
-
-
19744369661
-
Functional linear regression analysis for longitudinal data
-
b)
-
Yao F, Müller H, Wang J, (2005b) Functional linear regression analysis for longitudinal data. The Annals of Statistics, 33, 2873–903.
-
(2005)
The Annals of Statistics
, vol.33
, pp. 2873-2903
-
-
Yao, F.1
Müller, H.2
Wang, J.3
-
114
-
-
83455262070
-
Multilevel functional principal component analysis for high-dimensional data
-
Zipunnikov V, Caffo B, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu C, (2011) Multilevel functional principal component analysis for high-dimensional data. Journal of Computational and Graphical Statistics, 20, 852–73.
-
(2011)
Journal of Computational and Graphical Statistics
, vol.20
, pp. 852-873
-
-
Zipunnikov, V.1
Caffo, B.2
Yousem, D.M.3
Davatzikos, C.4
Schwartz, B.S.5
Crainiceanu, C.6
-
115
-
-
84919439034
-
Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis
-
Zipunnikov V, Greven S, Shou H, Caffo B, Reich DS, Crainiceanu C, (2014) Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis. The Annals of Applied Statistics, 8, 2175–202.
-
(2014)
The Annals of Applied Statistics
, vol.8
, pp. 2175-2202
-
-
Zipunnikov, V.1
Greven, S.2
Shou, H.3
Caffo, B.4
Reich, D.S.5
Crainiceanu, C.6
|