메뉴 건너뛰기




Volumn 8, Issue 4, 2014, Pages 2175-2202

Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis

Author keywords

Brain imaging data; Diffusion tensor imaging; Linear mixed model; Multiple sclerosis; Principal components

Indexed keywords


EID: 84919439034     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/14-AOAS748     Document Type: Article
Times cited : (37)

References (46)
  • 1
    • 84919457676 scopus 로고    scopus 로고
    • 3D-SLICER (2011). http://www.slicer.org/.
    • (2011) 3D-SLICER
  • 2
    • 77949493051 scopus 로고    scopus 로고
    • Linguistic pitch analysis using func- tional principal component mixed effect models
    • MR2744475
    • ASTON, J. A. D., CHIOU, J.-M. and EVANS, J. P. (2010). Linguistic pitch analysis using func- tional principal component mixed effect models. J. R. Stat. Soc. Ser. C. Appl. Stat. 59 297-317.MR2744475
    • (2010) J. R. Stat. Soc. Ser. C. Appl. Stat , vol.59 , pp. 297-317
    • Aston, J.A.D.1    Chiou, J.-M.2    Evans, J.P.3
  • 3
    • 66249124310 scopus 로고    scopus 로고
    • Bayesian semiparametric joint models for functional predictors
    • MR2663031
    • BIGELOW, J. L. and DUNSON, D. B. (2009). Bayesian semiparametric joint models for functional predictors. J. Amer. Statist. Assoc. 104 26-36.MR2663031
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 26-36
    • Bigelow, J.L.1    Dunson, D.B.2
  • 5
    • 74049164111 scopus 로고    scopus 로고
    • Generalized multilevel functional regression
    • MR2750578
    • CRAINICEANU, C. M., STAICU, A.-M. and DI, C.-Z. (2009). Generalized multilevel functional regression. J. Amer. Statist. Assoc. 104 1550-1561.MR2750578
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 1550-1561
    • Crainiceanu, C.M.1    Staicu, A.-M.2    Di, C.-Z.3
  • 6
    • 80054711200 scopus 로고    scopus 로고
    • Population value decomposition, a framework for the analysis of image populations
    • MR2894733
    • CRAINICEANU, C. M., CAFFO, B. S., LUO, S., ZIPUNNIKOV, V. M. and PUNJABI, N. M. (2011). Population value decomposition, a framework for the analysis of image populations. J. Amer. Statist. Assoc. 106 775-790.MR2894733
    • (2011) J. Amer. Statist. Assoc , vol.106 , pp. 775-790
    • Crainiceanu, C.M.1    Caffo, B.S.2    Luo, S.3    Zipunnikov, V.M.4    Punjabi, N.M.5
  • 8
    • 84961288655 scopus 로고    scopus 로고
    • Multilevel sparse functional principal com- ponent analysis
    • DI, C., CRAINICEANU, C. M. and JANK, W. S. (2010). Multilevel sparse functional principal com- ponent analysis. Stat. 3 126-143.
    • (2010) Stat , vol.3 , pp. 126-143
    • Di, C.1    Crainiceanu, C.M.2    Jank, W.S.3
  • 9
    • 79960273349 scopus 로고    scopus 로고
    • Multilevel functional principal component analysis
    • MR2668715
    • DI, C.-Z., CRAINICEANU, C. M., CAFFO, B. S. and PUNJABI, N. M. (2009). Multilevel functional principal component analysis. Ann. Appl. Stat. 3 458-488.MR2668715
    • (2009) Ann. Appl. Stat , vol.3 , pp. 458-488
    • Di, C.-Z.1    Crainiceanu, C.M.2    Caffo, B.S.3    Punjabi, N.M.4
  • 10
    • 0033721471 scopus 로고    scopus 로고
    • Inferring the eigenvalues of covariance matrices from lim- ited, noisy data
    • MR1824643
    • EVERSON, R. and ROBERTS, S. (2000). Inferring the eigenvalues of covariance matrices from lim- ited, noisy data. IEEE Trans. Signal Process. 48 2083-2091.MR1824643
    • (2000) IEEE Trans. Signal Process , vol.48 , pp. 2083-2091
    • Everson, R.1    Roberts, S.2
  • 11
    • 79958755327 scopus 로고    scopus 로고
    • Penalized func- tional regression analysis of white-matter tract profiles in multiple sclerosis
    • GOLDSMITH, J., CRAINICEANU, C. M., CAFFO, B. S. and REICH, D. S. (2011). Penalized func- tional regression analysis of white-matter tract profiles in multiple sclerosis. NeuroImage 57 431-439.
    • (2011) NeuroImage , vol.57 , pp. 431-439
    • Goldsmith, J.1    Crainiceanu, C.M.2    Caffo, B.S.3    Reich, D.S.4
  • 12
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Johns Hopkins Univ. Press, Baltimore, MD, MR1417720
    • GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore, MD.MR1417720
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 13
    • 79953051021 scopus 로고    scopus 로고
    • Longitudinal functional prin- cipal component analysis
    • MR2727452
    • GREVEN, S., CRAINICEANU, C., CAFFO, B. and REICH, D. (2010). Longitudinal functional prin- cipal component analysis. Electron. J. Stat. 4 1022-1054.MR2727452
    • (2010) Electron. J. Stat , vol.4 , pp. 1022-1054
    • Greven, S.1    Crainiceanu, C.2    Caffo, B.3    Reich, D.4
  • 14
    • 0036185675 scopus 로고    scopus 로고
    • Functional mixed effects models
    • MR1891050
    • GUO, W. (2002). Functional mixed effects models. Biometrics 58 121-128.MR1891050
    • (2002) Biometrics , vol.58 , pp. 121-128
    • Guo, W.1
  • 15
    • 47649117281 scopus 로고    scopus 로고
    • Modelling sparse generalized longitudinal ob- servations with latent Gaussian processes
    • MR2523900
    • HALL, P., MÜLLER, H.-G. and YAO, F. (2008). Modelling sparse generalized longitudinal ob- servations with latent Gaussian processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 703-723.MR2523900
    • (2008) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.70 , pp. 703-723
    • Hall, P.1    MÜller, H.-G.2    Yao, F.3
  • 16
    • 0000317021 scopus 로고
    • Extension of the Gauss-Markov theorem to include the estimation of random effects
    • MR0398007
    • HARVILLE, D. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects. Ann. Statist. 4 384-395.MR0398007
    • (1976) Ann. Statist , vol.4 , pp. 384-395
    • Harville, D.1
  • 17
    • 84864407941 scopus 로고    scopus 로고
    • Semiparamet- ric Bayesian local functional models for diffusion tensor tract statistics
    • HUA, Z. W., DUNSON, D. B., GILMORE, J. H., STYNER, M. and ZHU, H. T. (2012). Semiparamet- ric Bayesian local functional models for diffusion tensor tract statistics. NeuroImage 63 460-474.
    • (2012) NeuroImage , vol.63 , pp. 460-474
    • Hua, Z.W.1    Dunson, D.B.2    Gilmore, J.H.3    Styner, M.4    Zhu, H.T.5
  • 18
    • 0003097075 scopus 로고
    • Über lineare Methoden in der Wahrscheinlichkeitsrechnung
    • KARHUNEN, K. (1947). Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academie Scientiarum Fennicae 37 1-79.
    • (1947) Annales Academie Scientiarum Fennicae , vol.37 , pp. 1-79
    • Karhunen, K.1
  • 20
    • 0003998877 scopus 로고
    • 4th ed. Springer, New York, MR0651018
    • LOÈVE, M. (1978). Probability Theory II, 4th ed. Springer, New York.MR0651018
    • (1978) Probability Theory II
    • LoÈve, M.1
  • 22
    • 0043164386 scopus 로고    scopus 로고
    • Automatic choice of dimensionality for PCA
    • MINKA, T. P. (2000). Automatic choice of dimensionality for PCA. Adv. Neural Inf. Process. Syst. 13598-604.
    • (2000) Adv. Neural Inf. Process. Syst , pp. 13598-13604
    • Minka, T.P.1
  • 23
    • 84919450301 scopus 로고    scopus 로고
    • MIPAV
    • MIPAV (2011). http://mipav.cit.nih.gov.
    • (2011)
  • 27
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
    • MR2840180
    • MORRIS, J. S., BALADANDAYUTHAPANI, V., HERRICK, R. C., SANNA, P. and GUTSTEIN, H. (2011). Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann. Appl. Stat. 5 894-923.MR2840180
    • (2011) Ann. Appl. Stat , vol.5 , pp. 894-923
    • Morris, J.S.1    Baladandayuthapani, V.2    Herrick, R.C.3    Sanna, P.4    Gutstein, H.5
  • 28
    • 84919450300 scopus 로고    scopus 로고
    • National Alliance for Medical Image Computing (NA-MIC)
    • PUJOL, S. (2010). 3D-Slicer (tutorial). National Alliance for Medical Image Computing (NA-MIC).
    • (2010) 3D-Slicer (tutorial)
    • Pujol, S.1
  • 30
    • 73749086028 scopus 로고    scopus 로고
    • Automated vs conven- tional tractography in multiple sclerosis: Variablity and correlation with disability
    • REICH, D. S., OZTURK, A., CALABRESI, P. A. and MORI, S. (2010). Automated vs conven- tional tractography in multiple sclerosis: Variablity and correlation with disability. NeuroImage 49 3047-3056.
    • (2010) NeuroImage , vol.49 , pp. 3047-3056
    • Reich, D.S.1    Ozturk, A.2    Calabresi, P.A.3    Mori, S.4
  • 32
    • 77949757564 scopus 로고    scopus 로고
    • Functional generalized linear models with images as pre- dictors
    • MR2756691
    • REISS, P. T. and OGDEN, R. T. (2010). Functional generalized linear models with images as pre- dictors. Biometrics 66 61-69.MR2756691
    • (2010) Biometrics , vol.66 , pp. 61-69
    • Reiss, P.T.1    Ogden, R.T.2
  • 33
    • 80052180054 scopus 로고    scopus 로고
    • Functional logistic regression with PET imaging data: A voxel-level clinical diagnostic tool
    • REISS, P. T., OGDEN, R. T., MANN, J. and PARSEY, R. V. (2005). Functional logistic regression with PET imaging data: A voxel-level clinical diagnostic tool. Journal of Cerebral Blood Flow & Metabolism 25 s635.
    • (2005) Journal of Cerebral Blood Flow & Metabolism , vol.25 , pp. s635
    • Reiss, P.T.1    Ogden, R.T.2    Mann, J.3    Parsey, R.V.4
  • 34
    • 60449108968 scopus 로고    scopus 로고
    • Bayesian nonparametric functional data analysis through density estimation
    • MR2482141
    • RODRÍGUEZ, A., DUNSON, D. B. and GELFAND, A. E. (2009). Bayesian nonparametric functional data analysis through density estimation. Biometrika 96 149-162.MR2482141
    • (2009) Biometrika , vol.96 , pp. 149-162
    • RodrÍguez, A.1    Dunson, D.B.2    Gelfand, A.E.3
  • 35
    • 84898929664 scopus 로고    scopus 로고
    • EM algorithms for PCA and SPCA
    • ROWEIS, S. (1997). EM algorithms for PCA and SPCA. Adv. Neural Inf. Process. Syst. 10 626-632.
    • (1997) Adv. Neural Inf. Process. Syst , vol.10 , pp. 626-632
    • Roweis, S.1
  • 36
    • 79960253679 scopus 로고    scopus 로고
    • Popu- lation wide model-free quantification of blood-brain-barrier dynamics in multiple sclerosis
    • SHINOHARA, R., CRAINICEANU, C., CAFFO, B., GAITA, M. I. and REICH, D. S. (2011). Popu- lation wide model-free quantification of blood-brain-barrier dynamics in multiple sclerosis. NeuroImage 57 1430-1446.
    • (2011) NeuroImage , vol.57 , pp. 1430-1446
    • Shinohara, R.1    Crainiceanu, C.2    Caffo, B.3    Gaita, M.I.4    Reich, D.S.5
  • 38
    • 77749242738 scopus 로고    scopus 로고
    • Fast analysis of spatially correlated multilevel functional data
    • STAICU, A.-M., CRAINICEANU, C. M. and CARROLL, R. J. (2010). Fast analysis of spatially correlated multilevel functional data. Biostatistics 11 177-194.
    • (2010) Biostatistics , vol.11 , pp. 177-194
    • Staicu, A.-M.1    Crainiceanu, C.M.2    Carroll, R.J.3
  • 41
    • 84885751298 scopus 로고    scopus 로고
    • Fmem: Functional mixed effects modeling for the analysis of longitudinal white matter tract data
    • YUAN, Y., GILMORE, J. H., GENG, X., STYNER, M., CHEN, K., WANG, J. L. and ZHU, H. (2014). Fmem: Functional mixed effects modeling for the analysis of longitudinal white matter tract data. NeuroImage 84 753-764.
    • (2014) NeuroImage , vol.84 , pp. 753-764
    • Yuan, Y.1    Gilmore, J.H.2    Geng, X.3    Styner, M.4    Chen, K.5    Wang, J.L.6    Zhu, H.7
  • 42
    • 33746803683 scopus 로고    scopus 로고
    • A novel incremental principal component analysis and its application for face recognition. IEEE Transactions on Systems, Man, and Cybernetics
    • ZHAO, H., YUEN, P. C. and KWOK, J. T. (2006). A novel incremental principal component analysis and its application for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36 873-886.
    • (2006) Part B: Cybernetics , vol.36 , pp. 873-886
    • Zhao, H.1    Yuen, P.C.2    Kwok, J.T.3
  • 43
    • 80054702555 scopus 로고    scopus 로고
    • Robust, adaptive functional regression in func- tional mixed model framework
    • MR2894772
    • ZHU, H., BROWN, P. J. and MORRIS, J. S. (2011). Robust, adaptive functional regression in func- tional mixed model framework. J. Amer. Statist. Assoc. 106 1167-1179.MR2894772
    • (2011) J. Amer. Statist. Assoc , vol.106 , pp. 1167-1179
    • Zhu, H.1    Brown, P.J.2    Morris, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.