메뉴 건너뛰기




Volumn 111, Issue 516, 2016, Pages 1548-1563

Smoothing Parameter and Model Selection for General Smooth Models

Author keywords

Additive model; AIC; Distributional regression; GAM; Location scale and shape model; Ordered categorical regression; Penalized regression spline; REML; Smooth Cox model; Smoothing parameter uncertainty; Statistical algorithm; Tweedie distribution

Indexed keywords


EID: 85010676878     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2016.1180986     Document Type: Article
Times cited : (976)

References (44)
  • 1
    • 0036645099 scopus 로고    scopus 로고
    • Serum Protein Fingerprinting Coupled With a Pattern-Matching Algorithm Distinguishes Prostate Cancer From Benign Prostate Hyperplasia and Healthy Men
    • Adam, B.-L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares, L. H., Semmes, O. J., Schellhammer, P. F., Yasui, Y., Feng, Z., et al. (2002), “Serum Protein Fingerprinting Coupled With a Pattern-Matching Algorithm Distinguishes Prostate Cancer From Benign Prostate Hyperplasia and Healthy Men,” Cancer Research, 62, 3609–3614.
    • (2002) Cancer Research , vol.62 , pp. 3609-3614
    • Adam, B.-L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5    Cazares, L.H.6    Semmes, O.J.7    Schellhammer, P.F.8    Yasui, Y.9    Feng, Z.10
  • 2
    • 0000501656 scopus 로고
    • Information Theory and an Extension of the Maximum Likelihood Principle
    • eds. B. Petran, and F. Csaaki, Budapest: Akadeemiai Kiadi, pp. 267–281
    • Akaike, H., (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” in International Symposium on Information Theory, eds. B. Petran, and F. Csaaki, Budapest:Akadeemiai Kiadi, pp. 267–281.
    • (1973) International Symposium on Information Theory
    • Akaike, H.1
  • 3
    • 0002431823 scopus 로고
    • A Time Series Approach to Numerical Differentiation
    • Anderssen, R., and Bloomfield, P., (1974), “A Time Series Approach to Numerical Differentiation,” Technometrics, 16, 69–75.
    • (1974) Technometrics , vol.16 , pp. 69-75
    • Anderssen, R.1    Bloomfield, P.2
  • 8
    • 26444547624 scopus 로고    scopus 로고
    • Generalized Structured Additive Regression Based on Bayesian p-Splines
    • Brezger, A., and Lang, S., (2006), “Generalized Structured Additive Regression Based on Bayesian p-Splines,” Computational Statistics & Data Analysis, 50, 967–991.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 10
    • 0000336139 scopus 로고
    • Regression Models and Life Tables
    • Series B, 34
    • Cox, D., (1972), “Regression Models and Life Tables,” Journal of the Royal Statistical Society, Series B, 34, 187–220.
    • (1972) Journal of the Royal Statistical Society , pp. 187-220
    • Cox, D.1
  • 11
    • 0348186338 scopus 로고    scopus 로고
    • Cambridge, UK: Cambridge University Press
    • Davison, A. C., (2003), Statistical Models, Cambridge, UK:Cambridge University Press.
    • (2003) Statistical Models
    • Davison, A.C.1
  • 12
    • 25444532788 scopus 로고    scopus 로고
    • Flexible Smoothing With B-Splines and Penalties
    • Eilers, P. H. C., and Marx, B. D., (1996), “Flexible Smoothing With B-Splines and Penalties,” Statistical Science 11, 89–121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 13
    • 8644257675 scopus 로고    scopus 로고
    • Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective
    • Fahrmeir, L., Kneib, T., and Lang, S., (2004), “Penalized Structured Additive Regression for Space-Time Data:A Bayesian Perspective,” Statistica Sinica, 14, 731–761.
    • (2004) Statistica Sinica , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 15
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random Field Priors
    • Fahrmeir, L., and Lang, S., (2001), “Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random Field Priors,” Applied Statistics, 50, 201–220.
    • (2001) Applied Statistics , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 16
    • 78651278795 scopus 로고    scopus 로고
    • On the Behaviour of Marginal and Conditional AIC in Linear Mixed Models
    • Greven, S., and Kneib, T., (2010), “On the Behaviour of Marginal and Conditional AIC in Linear Mixed Models,” Biometrika, 97, 773–789.
    • (2010) Biometrika , vol.97 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 17
    • 84972488102 scopus 로고
    • Generalized Additive Models” (with discussion)
    • Hastie, T., and Tibshirani, R., (1986), “Generalized Additive Models” (with discussion), Statistical Science, 1, 297–318.
    • (1986) Statistical Science , vol.1 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.2
  • 19
    • 80052029170 scopus 로고
    • Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models)
    • Kass, R. E., and Steffey, D., (1989), “Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models),” Journal of the American Statistical Association, 84, 717–726.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 717-726
    • Kass, R.E.1    Steffey, D.2
  • 20
    • 84934804898 scopus 로고    scopus 로고
    • Bayesian Structured Additive Distributional Regression for Multivariate Responses
    • Series C, 64
    • Klein, N., Kneib, T., Klasen, S., and Lang, S., (2014), “Bayesian Structured Additive Distributional Regression for Multivariate Responses,” Journal of the Royal Statistical Society, Series C, 64, 569–591.
    • (2014) Journal of the Royal Statistical Society , pp. 569-591
    • Klein, N.1    Kneib, T.2    Klasen, S.3    Lang, S.4
  • 21
    • 84938510555 scopus 로고    scopus 로고
    • Bayesian Structured Additive Distributional Regression With an Application to Regional Income Inequality in Germany
    • Klein, N., Kneib, T., Lang, S., and Sohn, A., (2015), “Bayesian Structured Additive Distributional Regression With an Application to Regional Income Inequality in Germany,” Annals of Applied Statistics, 9, 1024–1052.
    • (2015) Annals of Applied Statistics , vol.9 , pp. 1024-1052
    • Klein, N.1    Kneib, T.2    Lang, S.3    Sohn, A.4
  • 22
    • 0020333131 scopus 로고
    • Random-Effects Models for Longitudinal Data
    • Laird, N. M., and Ware, J. H., (1982), “Random-Effects Models for Longitudinal Data,” Biometrics, 38, 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 23
    • 50949086329 scopus 로고    scopus 로고
    • A Note on Conditional AIC for Linear Mixed-Effects Models
    • Liang, H., Wu, H., and Zou, G., (2008), “A Note on Conditional AIC for Linear Mixed-Effects Models,” Biometrika, 95, 773–778.
    • (2008) Biometrika , vol.95 , pp. 773-778
    • Liang, H.1    Wu, H.2    Zou, G.3
  • 24
    • 79953654016 scopus 로고    scopus 로고
    • Practical Variable Selection for Generalized Additive Models
    • Marra, G., and Wood, S. N., (2011), “Practical Variable Selection for Generalized Additive Models,” Computational Statistics & Data Analysis, 55, 2372–2387.
    • (2011) Computational Statistics & Data Analysis , vol.55 , pp. 2372-2387
    • Marra, G.1    Wood, S.N.2
  • 25
    • 84857058351 scopus 로고    scopus 로고
    • Coverage Properties of Confidence Intervals for Generalized Additive Model Components
    • Marra, G., and Wood, S. N., (2012), “Coverage Properties of Confidence Intervals for Generalized Additive Model Components,” Scandinavian Journal of Statistics, 39, 53–74.
    • (2012) Scandinavian Journal of Statistics , vol.39 , pp. 53-74
    • Marra, G.1    Wood, S.N.2
  • 26
    • 0032493547 scopus 로고    scopus 로고
    • Direct Generalized Additive Modeling With Penalized Likelihood
    • Marx, B. D., and Eilers, P. H., (1998), “Direct Generalized Additive Modeling With Penalized Likelihood,” Computational Statistics and Data Analysis, 28, 193–209.
    • (1998) Computational Statistics and Data Analysis , vol.28 , pp. 193-209
    • Marx, B.D.1    Eilers, P.H.2
  • 28
    • 33845606053 scopus 로고
    • Bayesian Confidence Intervals for Smoothing Splines
    • Nychka, D., (1988), “Bayesian Confidence Intervals for Smoothing Splines,” Journal of the American Statistical Association, 83, 1134–1143.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1134-1143
    • Nychka, D.1
  • 29
    • 62849093921 scopus 로고    scopus 로고
    • Smoothing Parameter Selection for a Class of Semiparametric Linear Models
    • Series B, 71
    • Reiss, P. T., and Ogden, T. R., (2009), “Smoothing Parameter Selection for a Class of Semiparametric Linear Models,” Journal of the Royal Statistical Society, Series B, 71, 505–523.
    • (2009) Journal of the Royal Statistical Society , pp. 505-523
    • Reiss, P.T.1    Ogden, T.R.2
  • 30
    • 18544382833 scopus 로고    scopus 로고
    • Generalized Additive Models for Location, Scale and Shape
    • Series C, 54
    • Rigby, R., and Stasinopoulos, D. M., (2005), “Generalized Additive Models for Location, Scale and Shape,” Journal of the Royal Statistical Society, Series C, 54, 507–554.
    • (2005) Journal of the Royal Statistical Society , pp. 507-554
    • Rigby, R.1    Stasinopoulos, D.M.2
  • 32
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations
    • Series B, 71
    • Rue, H., Martino, S., and Chopin, N., (2009), “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations,” Journal of the Royal Statistical Society, Series B, 71, 319–392.
    • (2009) Journal of the Royal Statistical Society , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 34
    • 84897892561 scopus 로고    scopus 로고
    • A Unifying Approach to the Estimation of the Conditional Akaike Information in Generalized Linear Mixed Models
    • Säfken, B., Kneib, T., van Waveren, C.-S., and Greven, S., (2014), “A Unifying Approach to the Estimation of the Conditional Akaike Information in Generalized Linear Mixed Models,” Electronic Journal of Statistics, 8, 201–225.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 201-225
    • Säfken, B.1    Kneib, T.2    van Waveren, C.-S.3    Greven, S.4
  • 35
    • 0001303166 scopus 로고
    • Laplace Approximation of High Dimensional Integrals
    • Series B, 57
    • Shun, Z., and McCullagh, P., (1995), “Laplace Approximation of High Dimensional Integrals,” Journal of the Royal Statistical Society, Series B, 57, 749–760.
    • (1995) Journal of the Royal Statistical Society , pp. 749-760
    • Shun, Z.1    McCullagh, P.2
  • 36
    • 0001995852 scopus 로고
    • Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting
    • Series B, 47
    • Silverman, B. W., (1985), “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting,” Journal of the Royal Statistical Society, Series B, 47, 1–53.
    • (1985) Journal of the Royal Statistical Society , pp. 1-53
    • Silverman, B.W.1
  • 38
    • 0000939344 scopus 로고
    • Bayesian Confidence Intervals for the Cross Validated Smoothing Spline
    • Series B, 45
    • Wahba, G., (1983), “Bayesian Confidence Intervals for the Cross Validated Smoothing Spline,” Journal of the Royal Statistical Society, Series B, 45, 133–150.
    • (1983) Journal of the Royal Statistical Society , pp. 133-150
    • Wahba, G.1
  • 39
    • 0000608177 scopus 로고
    • A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem
    • Wahba, G., (1985), “A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem,” The Annals of Statistics, pp. 1378–1402.
    • (1985) The Annals of Statistics , pp. 1378-1402
    • Wahba, G.1
  • 40
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and Smoothing Parameter Estimation With Multiple Quadratic Penalties
    • Series B, 62
    • Wood, S. N., (2000), “Modelling and Smoothing Parameter Estimation With Multiple Quadratic Penalties,” Journal of the Royal Statistical Society, Series B, 62, 413–428.
    • (2000) Journal of the Royal Statistical Society , pp. 413-428
    • Wood, S.N.1
  • 41
    • 33645690420 scopus 로고    scopus 로고
    • Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models
    • Wood, S. N., (2006), “Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models,” Biometrics, 62, 1025–1036.
    • (2006) Biometrics , vol.62 , pp. 1025-1036
    • Wood, S.N.1
  • 42
    • 78650862532 scopus 로고    scopus 로고
    • Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
    • Series B, 73
    • Wood, S. N., (2011), “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models,” Journal of the Royal Statistical Society, Series B, 73, 3–36.
    • (2011) Journal of the Royal Statistical Society , pp. 3-36
    • Wood, S.N.1
  • 44
    • 80455176896 scopus 로고    scopus 로고
    • Conditional Akaike Information Criterion for Generalized Linear Mixed Models
    • Yu, D., and Yau, K. K., (2012), “Conditional Akaike Information Criterion for Generalized Linear Mixed Models,” Computational Statistics & Data Analysis, 56, 629–644.
    • (2012) Computational Statistics & Data Analysis , vol.56 , pp. 629-644
    • Yu, D.1    Yau, K.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.