메뉴 건너뛰기




Volumn 109, Issue 507, 2014, Pages 1123-1133

Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data

Author keywords

Concurrent regression models; Covariance kernel; Exponential family; Nonparametric regression

Indexed keywords


EID: 84907522902     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.889021     Document Type: Article
Times cited : (50)

References (36)
  • 2
    • 60149103563 scopus 로고    scopus 로고
    • The Pseudo-Marginal Approach for Efficient Computation
    • Andrieu, C., Roberts, G.O. (2009), The Pseudo-Marginal Approach for Efficient Computation, The Annals of Statistics, 37, 697–725.
    • (2009) The Annals of Statistics , vol.37 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 3
    • 84874776816 scopus 로고    scopus 로고
    • Efficient Gaussian Process Regression for Large Data Sets
    • Banerjee, A., Dunson, D., Tokdar, S. (2013), Efficient Gaussian Process Regression for Large Data Sets, Biometrika, 100, 75–89.
    • (2013) Biometrika , vol.100 , pp. 75-89
    • Banerjee, A.1    Dunson, D.2    Tokdar, S.3
  • 7
    • 84972539015 scopus 로고
    • Neural Networks: A Review From a Statistical Perspective” (with discussion)
    • Cheng, B., Titterington, D.M. (1994), Neural Networks: A Review From a Statistical Perspective” (with discussion), Statistical Science, 9, 2–54.
    • (1994) Statistical Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 11
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random Field Priors
    • Fahrmeir, L., Lang, S. (2001), Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random Field Priors, Applied Statistics, 50, 201–220.
    • (2001) Applied Statistics , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 13
    • 0034355052 scopus 로고    scopus 로고
    • Two-Step Estimation of Functional Linear Models With Applications to Longitudinal Data
    • Fan, J., Zhang, J.-T. (2000), Two-Step Estimation of Functional Linear Models With Applications to Longitudinal Data, Journal of Royal Statistical Society, 62, 303–322.
    • (2000) Journal of Royal Statistical Society , vol.62 , pp. 303-322
    • Fan, J.1    Zhang, J.-T.2
  • 14
    • 33847339319 scopus 로고    scopus 로고
    • Posterior Consistency of Gaussian Process Prior for Nonparametric Binary Regression
    • Ghosal, S., Roy, A. (2006), Posterior Consistency of Gaussian Process Prior for Nonparametric Binary Regression, The Annals of Statistics, 34, 2413–2429.
    • (2006) The Annals of Statistics , vol.34 , pp. 2413-2429
    • Ghosal, S.1    Roy, A.2
  • 15
    • 47649117281 scopus 로고    scopus 로고
    • Modelling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes
    • Hall, P., Müller, H.-G., Yao, F. (2008), Modelling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes, Journal of Royal Statistical Society, 70, 703–723.
    • (2008) Journal of Royal Statistical Society , vol.70 , pp. 703-723
    • Hall, P.1    Müller, H.-G.2    Yao, F.3
  • 18
    • 77952560131 scopus 로고    scopus 로고
    • Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data
    • Leng, C., Zhang, W., Pan, J. (2009), Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data, Journal of the American Statistical Association, 105, 181–193.
    • (2009) Journal of the American Statistical Association , vol.105 , pp. 181-193
    • Leng, C.1    Zhang, W.2    Pan, J.3
  • 19
    • 33846339755 scopus 로고    scopus 로고
    • Convergence Rate of MLE in Generalized Linear and Nonlinear Mixed-Effects Models: Theory and Applications
    • Nie, L. (2007), Convergence Rate of MLE in Generalized Linear and Nonlinear Mixed-Effects Models: Theory and Applications, Journal of Statistical Planning and Inference, 137, 1787–1804.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 1787-1804
    • Nie, L.1
  • 23
    • 0001597980 scopus 로고
    • Estimating the Mean and Covariance Nonparametrically When the Data are Curves
    • Rice, J.A., Silverman, B.W. (1991), Estimating the Mean and Covariance Nonparametrically When the Data are Curves, Journal of Royal Statistical Society, 53, 233–243.
    • (1991) Journal of Royal Statistical Society , vol.53 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 24
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations” (with discussion)
    • Rue, H., Martino, S., Chopin, N. (2009), Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations” (with discussion), Journal of Royal Statistical Society, 71, 319–392.
    • (2009) Journal of Royal Statistical Society , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 27
    • 50949099191 scopus 로고    scopus 로고
    • Generalized Varying Coefficient Models for Longitudinal Data
    • Şentürk, D., Müller, H.-G. (2008), Generalized Varying Coefficient Models for Longitudinal Data, Biometrika, 95, 653–666.
    • (2008) Biometrika , vol.95 , pp. 653-666
    • Şentürk, D.1    Müller, H.-G.2
  • 30
    • 24144438211 scopus 로고    scopus 로고
    • Learning With Large Data-Sets Using a Filting Approach
    • Murray-Smith R., R, Shorten ., (eds), Berlin Heidelberg: Springer-Verlag:
    • Shi, J.Q., Murray-Smith, R., Titterington, D.M., Pearlmutter, B.A. (2005), “Learning With Large Data-Sets Using a Filting Approach,” in Switching and Learning in Feedback Systems, eds. R. Murray-Smith and R. Shorten, Berlin Heidelberg: Springer-Verlag, 128–139.
    • (2005) Switching and Learning in Feedback Systems , pp. 128-139
    • Shi, J.Q.1    Murray-Smith, R.2    Titterington, D.M.3    Pearlmutter, B.A.4
  • 31
    • 45449097427 scopus 로고    scopus 로고
    • Curve Prediction and Clustering With Mixtures of Gaussian Process Functional Regression Models
    • Shi, J.Q., Wang, B. (2008), Curve Prediction and Clustering With Mixtures of Gaussian Process Functional Regression Models, Statistics and Computing, 18, 267–283.
    • (2008) Statistics and Computing , vol.18 , pp. 267-283
    • Shi, J.Q.1    Wang, B.2
  • 32
    • 34548459917 scopus 로고    scopus 로고
    • Gaussian Process Functional Regression Modelling for Batch Data
    • Shi, J.Q., Wang, B., Murray-Smith, R., Titterington, D.M. (2007), Gaussian Process Functional Regression Modelling for Batch Data, Biometrics, 63, 714–723.
    • (2007) Biometrics , vol.63 , pp. 714-723
    • Shi, J.Q.1    Wang, B.2    Murray-Smith, R.3    Titterington, D.M.4
  • 33
    • 84867501400 scopus 로고    scopus 로고
    • Mixed-Effects GPFR Models With Application to Dose-Response Curve Prediction
    • Shi, J.Q., Wang, B., Will, E.J., West, R.M. (2012), Mixed-Effects GPFR Models With Application to Dose-Response Curve Prediction, Statistics in Medicine, 31, 3165–3177.
    • (2012) Statistics in Medicine , vol.31 , pp. 3165-3177
    • Shi, J.Q.1    Wang, B.2    Will, E.J.3    West, R.M.4
  • 35
    • 19744369661 scopus 로고    scopus 로고
    • Functional Linear Regression Analysis for Longitudinal Data
    • Yao, F., Müller, H.-G., Wang, J.L. (2005a), Functional Linear Regression Analysis for Longitudinal Data, The Annals of Statistics, 33, 2873–2903.
    • (2005) The Annals of Statistics , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.-G.2    Wang, J.L.3
  • 36
    • 19744375466 scopus 로고    scopus 로고
    • Functional Data Analysis for Sparse Longitudinal Data
    • ——— (2005b), Functional Data Analysis for Sparse Longitudinal Data, Journal of the American Statistical Association, 100, 577–590.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 577-590


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.