메뉴 건너뛰기




Volumn 27, Issue 4, 2017, Pages 913-926

Boosting flexible functional regression models with a high number of functional historical effects

Author keywords

Functional data analysis; Functional response; Gradient boosting; Variable selection

Indexed keywords


EID: 84969793663     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-016-9662-1     Document Type: Article
Times cited : (34)

References (33)
  • 1
    • 85015823067 scopus 로고    scopus 로고
    • FDboost: boosting functional regression models
    • Brockhaus, S.: FDboost: boosting functional regression models. R package version 0.0-8, (2015) Available at http://CRAN.R-project.org/package=FDboost
    • (2015) R package version 0.0-8
    • Brockhaus, S.1
  • 3
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting (with discussion)
    • Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat. Sci. 22(4), 477–505 (2007)
    • (2007) Stat. Sci , vol.22 , Issue.4 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 4
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: regression and classification
    • 2 loss: regression and classification. J. Am. Stat. Assoc. 98(462), 324–339 (2003)
    • (2003) J. Am. Stat. Assoc , vol.98 , Issue.462 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 5
    • 0000014224 scopus 로고
    • Linear smoothers and additive models
    • Buja, A., Hastie, T.J., Tibshirani, R.J.: Linear smoothers and additive models. Ann. Stat. 17(2), 453–510 (1989)
    • (1989) Ann. Stat , vol.17 , Issue.2 , pp. 453-510
    • Buja, A.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 7
    • 33644769535 scopus 로고    scopus 로고
    • Generalized linear array models with applications to multidimensional smoothing
    • Currie, I.D., Durban, M., Eilers, P.H.C.: Generalized linear array models with applications to multidimensional smoothing. J. R. Stat. Soc. 68(2), 259–280 (2006)
    • (2006) J. R. Stat. Soc , vol.68 , Issue.2 , pp. 259-280
    • Currie, I.D.1    Durban, M.2    Eilers, P.H.C.3
  • 8
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (with comments and rejoinder)
    • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties (with comments and rejoinder). Stat. Sci. 11(2), 89–121 (1996)
    • (1996) Stat. Sci , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)
    • (2001) Ann. Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 11
    • 84924367263 scopus 로고    scopus 로고
    • Dynamic retrospective regression for functional data
    • Gervini, D.: Dynamic retrospective regression for functional data. Technometrics 57(1), 26–34 (2015)
    • (2015) Technometrics , vol.57 , Issue.1 , pp. 26-34
    • Gervini, D.1
  • 13
    • 0001257006 scopus 로고
    • Varying-coefficient models
    • Hastie, T.J., Tibshirani, R.J.: Varying-coefficient models. J. R. Stat. Soc. 55(4), 757–796 (1993)
    • (1993) J. R. Stat. Soc , vol.55 , Issue.4 , pp. 757-796
    • Hastie, T.J.1    Tibshirani, R.J.2
  • 14
    • 80053581322 scopus 로고    scopus 로고
    • A framework for unbiased model selection based on boosting
    • Hofner, B., Hothorn, T., Kneib, T., Schmid, M.: A framework for unbiased model selection based on boosting. J. Comput. Graph. Stat. 20(4), 956–971 (2011)
    • (2011) J. Comput. Graph. Stat , vol.20 , Issue.4 , pp. 956-971
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3    Schmid, M.4
  • 15
    • 84931262233 scopus 로고    scopus 로고
    • Controlling false discoveries in high-dimensional situations: boosting with stability selection
    • Hofner, B., Boccuto, L., Göker, M.: Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinform. 16(1), 144 (2015)
    • (2015) BMC Bioinform , vol.16 , Issue.1 , pp. 144
    • Hofner, B.1    Boccuto, L.2    Göker, M.3
  • 16
    • 84901420181 scopus 로고    scopus 로고
    • Hofner, B.: mboost: Model-based boosting
    • Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B.: mboost: Model-based boosting. R package version 2.4-2, (2015) Available at http://CRAN.R-project.org/package=mboost
    • (2015) R package version , vol.2 , pp. 2-4
    • Hothorn, T.1    Bühlmann, P.2    Kneib, T.3    Schmid, M.4
  • 18
    • 78650221431 scopus 로고    scopus 로고
    • Recent history functional linear models for sparse longitudinal data
    • Kim, K., Şentürk, D., Li, R.: Recent history functional linear models for sparse longitudinal data. J. Stat. Plan. Inference 141(4), 1554–1566 (2011)
    • (2011) J. Stat. Plan. Inference , vol.141 , Issue.4 , pp. 1554-1566
    • Kim, K.1    Şentürk, D.2    Li, R.3
  • 20
    • 0242595929 scopus 로고    scopus 로고
    • The historical functional linear model
    • Malfait, N., Ramsay, J.O.: The historical functional linear model. Can. J. Stat. 31(2), 115–128 (2003)
    • (2003) Can. J. Stat , vol.31 , Issue.2 , pp. 115-128
    • Malfait, N.1    Ramsay, J.O.2
  • 21
    • 79953654016 scopus 로고    scopus 로고
    • Practical variable selection for generalized additive models
    • Marra, G., Wood, S.N.: Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55(7), 2372–2387 (2011)
    • (2011) Comput. Stat. Data Anal , vol.55 , Issue.7 , pp. 2372-2387
    • Marra, G.1    Wood, S.N.2
  • 22
    • 77958487535 scopus 로고    scopus 로고
    • Stability selection (with discussion)
    • Meinshausen, N., Bühlmann, P.: Stability selection (with discussion). J. R. Stat. Soc. 72(4), 417–473 (2010)
    • (2010) J. R. Stat. Soc , vol.72 , Issue.4 , pp. 417-473
    • Meinshausen, N.1    Bühlmann, P.2
  • 23
    • 84947045799 scopus 로고    scopus 로고
    • The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia coli fed-batch fermentations
    • Melcher, M., Scharl, T., Spangl, B., Luchner, M., Cserjan, M., Bayer, K., Leisch, F., Striedner, G.: The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia coli fed-batch fermentations. Biotechnol. J. 10(11), 1770–1782 (2015)
    • (2015) Biotechnol. J , vol.10 , Issue.11 , pp. 1770-1782
    • Melcher, M.1    Scharl, T.2    Spangl, B.3    Luchner, M.4    Cserjan, M.5    Bayer, K.6    Leisch, F.7    Striedner, G.8
  • 24
    • 84928111503 scopus 로고    scopus 로고
    • Functional regression
    • Morris, J.S.: Functional regression. Ann. Rev. Stat. Appl. 2(1), 321–359 (2015)
    • (2015) Ann. Rev. Stat. Appl , vol.2 , Issue.1 , pp. 321-359
    • Morris, J.S.1
  • 25
  • 26
    • 84915809885 scopus 로고    scopus 로고
    • A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    • R Core Team.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, R 3.1.2, (2014) Available at http://www.R-project.org/
    • (2014) R 3 , vol.1 , pp. 2
    • Core Team, R.1
  • 28
    • 84964047394 scopus 로고    scopus 로고
    • Identifiability in penalized function-on-function regression models
    • Scheipl, F., Greven, S.: Identifiability in penalized function-on-function regression models. Electron. J. Stat. 10(1), 495–526 (2016)
    • (2016) Electron. J. Stat , vol.10 , Issue.1 , pp. 495-526
    • Scheipl, F.1    Greven, S.2
  • 30
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: another look at stability selection
    • Shah, R.D., Samworth, R.J.: Variable selection with error control: another look at stability selection. J. R. Stat. Soc. 75(1), 55–80 (2013)
    • (2013) J. R. Stat. Soc , vol.75 , Issue.1 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 31
    • 84882974298 scopus 로고    scopus 로고
    • An advanced monitoring platform for rational design of recombinant processes
    • Mandenius CF, Titchener-Hooker NJ, (eds), Springer, Berlin
    • Striedner, G., Bayer, K.: An advanced monitoring platform for rational design of recombinant processes. In: Mandenius, C.F., Titchener-Hooker, N.J. (eds.) Measurement, Monitoring, Modelling and Control of Bioprocesses, pp. 65–84. Springer, Berlin (2013)
    • (2013) Measurement, Monitoring, Modelling and Control of Bioprocesses , pp. 65-84
    • Striedner, G.1    Bayer, K.2
  • 32
    • 77749280569 scopus 로고    scopus 로고
    • Feature extraction in signal regression: a boosting technique for functional data regression
    • Tutz, G., Gertheiss, J.: Feature extraction in signal regression: a boosting technique for functional data regression. J. Comput. Graph. Stat. 19(1), 154–174 (2010)
    • (2010) J. Comput. Graph. Stat , vol.19 , Issue.1 , pp. 154-174
    • Tutz, G.1    Gertheiss, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.