메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 321-359

Functional Regression

Author keywords

Functional data analysis; Functional mixed effect models; Generalized additive models; Principal component analysis; Splines; Wavelets

Indexed keywords


EID: 84928111503     PISSN: 23268298     EISSN: 2326831X     Source Type: Journal    
DOI: 10.1146/annurev-statistics-010814-020413     Document Type: Article
Times cited : (405)

References (174)
  • 1
    • 33746796283 scopus 로고    scopus 로고
    • Testing in mixed-effects FANOVA models
    • Abramovich F, Angelini C. 2006. Testing in mixed-effects FANOVA models. J. Stat. Plan. Inf. 136:4326-48
    • (2006) J. Stat. Plan. Inf. , vol.136 , pp. 4326-4348
    • Abramovich, F.1    Angelini, C.2
  • 2
    • 34247379058 scopus 로고    scopus 로고
    • Estimation and inference in functional mixed-effect models
    • Antoniadis A, Sapatinas T. 2007. Estimation and inference in functional mixed-effect models. Comp. Stat. Data Anal. 51:4793-813
    • (2007) Comp. Stat. Data Anal. , vol.51 , pp. 4793-4813
    • Antoniadis, A.1    Sapatinas, T.2
  • 3
    • 85162499205 scopus 로고    scopus 로고
    • Generalized beta mixtures of Gaussians
    • ed. J Shawe-Taylor, R Zemel, P Bartlett, F Pereira, K Weinberger. La Jolla, CA: Neural Inf. Process. Syst. Found
    • Armagan A, Dunson D, Clyde M. 2011. Generalized beta mixtures of Gaussians. In Advances in Neural Information Processing Systems, Vol. 24, ed. J Shawe-Taylor, R Zemel, P Bartlett, F Pereira, K Weinberger, pp. 523-31. La Jolla, CA: Neural Inf. Process. Syst. Found. http://papers.nips.cc/paper/4439-generalized-beta-mixtures-of-gaussians
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 523-531
    • Armagan, A.1    Dunson, D.2    Clyde, M.3
  • 4
    • 77949493051 scopus 로고    scopus 로고
    • Linguistic pitch analysis using functional principal component mixed effect models
    • Aston JA, Chiou J, Evans J. 2010. Linguistic pitch analysis using functional principal component mixed effect models. J. R. Stat. Soc. C 59:297-317
    • (2010) J. R. Stat. Soc. C , vol.59 , pp. 297-317
    • Aston, J.A.1    Chiou, J.2    Evans, J.3
  • 5
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik J, Silverstein JW. 2006. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97:1382-408
    • (2006) J. Multivar. Anal. , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 6
    • 39849083922 scopus 로고    scopus 로고
    • Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis
    • Baladandayuthapani V, Mallick BK, Hong MY, Lupton JR, Turner ND, Carroll RJ. 2008. Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 64:321-22
    • (2008) Biometrics , vol.64 , pp. 321-322
    • Baladandayuthapani, V.1    Mallick, B.K.2    Hong, M.Y.3    Lupton, J.R.4    Turner, N.D.5    Carroll, R.J.6
  • 7
    • 0029085644 scopus 로고
    • A Bayesian model for growth curve analysis
    • Barry D. 1995. A Bayesian model for growth curve analysis. Biometrics 51(2):639-55
    • (1995) Biometrics , vol.51 , Issue.2 , pp. 639-655
    • Barry, D.1
  • 8
    • 0008612444 scopus 로고    scopus 로고
    • An empirical Bayes approach to growth curve analysis
    • Barry D. 1996. An empirical Bayes approach to growth curve analysis. Statistician 45:3-19
    • (1996) Statistician , vol.45 , pp. 3-19
    • Barry, D.1
  • 9
    • 52449110241 scopus 로고    scopus 로고
    • A Bayesian approach to functional-based multilevel modeling of longitudinal data: Applications to environmental epidemiology
    • Berhane K, Molitor NT. 2008. A Bayesian approach to functional-based multilevel modeling of longitudinal data: applications to environmental epidemiology. Biostatistics 4:686-99
    • (2008) Biostatistics , vol.4 , pp. 686-699
    • Berhane, K.1    Molitor, N.T.2
  • 10
    • 0040795703 scopus 로고    scopus 로고
    • Approximation spline de la prévision d'un processus fonctionnel autorégressif d'ordre 1
    • Besse PC, Cardot H. 1996. Approximation spline de la prévision d'un processus fonctionnel autorégressif d'ordre 1. Can. J. Stat. 24:467-87
    • (1996) Can. J. Stat. , vol.24 , pp. 467-487
    • Besse, P.C.1    Cardot, H.2
  • 11
    • 34548382745 scopus 로고    scopus 로고
    • Bayesian adaptive regression splines for hierarchical data
    • Bigelow JL, Dunson DB. 2007. Bayesian adaptive regression splines for hierarchical data. Biometrics 63:724-32
    • (2007) Biometrics , vol.63 , pp. 724-732
    • Bigelow, J.L.1    Dunson, D.B.2
  • 12
    • 1542469448 scopus 로고    scopus 로고
    • Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
    • Brown PJ, Fearn T, Vannucci M. 2001. Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. J. Am. Stat. Assoc. 96:398-408
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 398-408
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 13
    • 0032356568 scopus 로고    scopus 로고
    • Smoothing spline models for the analysis of nested and crossed samples of curves
    • Brumback BA, Rice JA. 1998. Smoothing spline models for the analysis of nested and crossed samples of curves. J. Am. Stat. Assoc. 93:961-76
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 961-976
    • Brumback, B.A.1    Rice, J.A.2
  • 14
    • 79961039284 scopus 로고    scopus 로고
    • Adaptive inference for the mean of a Gaussian process in functional data
    • Bunea F, Ivanescu AE, Wegkamp MH. 2011. Adaptive inference for the mean of a Gaussian process in functional data. J. R. Stat. Soc. B 73(4):531-58
    • (2011) J. R. Stat. Soc. B , vol.73 , Issue.4 , pp. 531-558
    • Bunea, F.1    Ivanescu, A.E.2    Wegkamp, M.H.3
  • 15
    • 0038784362 scopus 로고    scopus 로고
    • Testing hypotheses in the functional linear model
    • Cardot H, Ferraty F, Mas A, Sarda P. 2003. Testing hypotheses in the functional linear model. Scand. J. Stat. 30:241-55
    • (2003) Scand. J. Stat. , vol.30 , pp. 241-255
    • Cardot, H.1    Ferraty, F.2    Mas, A.3    Sarda, P.4
  • 18
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • CarvahloCM,PolsonNG, Scott JG. 2010. The horseshoe estimator for sparse signals. Biometrika 97(2):465-80
    • (2010) Biometrika , vol.97 , Issue.2 , pp. 465-480
    • Carvahlo, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 19
    • 79958772131 scopus 로고    scopus 로고
    • A penalized spline approach to functional mixed effect model analysis
    • Chen H, Wang Y. 2011. A penalized spline approach to functional mixed effect model analysis. Biometrics 67:861-70
    • (2011) Biometrics , vol.67 , pp. 861-870
    • Chen, H.1    Wang, Y.2
  • 20
    • 77949334921 scopus 로고    scopus 로고
    • Bayesian functional data analysis using WinBUGS
    • Crainiceanu CM, Goldsmith AJ. 2010. Bayesian functional data analysis using WinBUGS. J. Stat. Softw. 32(11):i11
    • (2010) J. Stat. Softw. , vol.32 , Issue.11 , pp. i11
    • Crainiceanu, C.M.1    Goldsmith, A.J.2
  • 21
    • 1042279287 scopus 로고    scopus 로고
    • Likelihood ratio tests in linearmixedmodels with one variance component
    • CrainiceanuCM, Ruppert D. 2004. Likelihood ratio tests in linearmixedmodels with one variance component. J. R. Stat. Soc. B 66(1):165-85
    • (2004) J. R. Stat. Soc. B , vol.66 , Issue.1 , pp. 165-185
    • Crainiceanu, C.M.1    Ruppert, D.2
  • 23
    • 84867490161 scopus 로고    scopus 로고
    • Bootstrap-based inference on the difference in the means of two correlated functional responses
    • Crainiceanu CM, Staicu AM, Ray S, Punjabi N. 2012. Bootstrap-based inference on the difference in the means of two correlated functional responses. Stat. Med. 31:3223-40
    • (2012) Stat. Med. , vol.31 , pp. 3223-3240
    • Crainiceanu, C.M.1    Staicu, A.M.2    Ray, S.3    Punjabi, N.4
  • 24
    • 65349171811 scopus 로고    scopus 로고
    • Smoothing spline estimators for functional linear regression
    • Crambes C, Kneip A, Sarda P. 2009. Smoothing spline estimators for functional linear regression. Ann. Stat. 37(1):35-72
    • (2009) Ann. Stat. , vol.37 , Issue.1 , pp. 35-72
    • Crambes, C.1    Kneip, A.2    Sarda, P.3
  • 25
    • 84857141061 scopus 로고    scopus 로고
    • Simultaneous confidence bands for nonparametric regression with functional data
    • Degras D. 2011. Simultaneous confidence bands for nonparametric regression with functional data. Stat. Sin. 21:1735-65
    • (2011) Stat. Sin. , vol.21 , pp. 1735-1765
    • Degras, D.1
  • 26
    • 0007180814 scopus 로고
    • Oscillation matrices with spline smoothing
    • Demmler A, Reinsch C. 1975. Oscillation matrices with spline smoothing. Numer. Math. 24:375-82
    • (1975) Numer. Math. , vol.24 , pp. 375-382
    • Demmler, A.1    Reinsch, C.2
  • 28
    • 84961288655 scopus 로고    scopus 로고
    • Multilevel sparse functional principal component analysis
    • Di CZ, Crainiceanu CM, Jank WS. 2014. Multilevel sparse functional principal component analysis. Stat 3(1):126-43
    • (2014) Stat , vol.3 , Issue.1 , pp. 126-143
    • Di, C.Z.1    Crainiceanu, C.M.2    Jank, W.S.3
  • 29
    • 0031338873 scopus 로고    scopus 로고
    • Spectral analysis of replicated biomedical time series
    • Diggle PJ, Wasel A. 1997. Spectral analysis of replicated biomedical time series. J. R. Stat. Soc. C 46(1):31-71
    • (1997) J. R. Stat. Soc. C , vol.46 , Issue.1 , pp. 31-71
    • Diggle, P.J.1    Wasel, A.2
  • 30
    • 0032958331 scopus 로고    scopus 로고
    • Discriminant analysis of event-related potential curves using smoothed principal components
    • Do KA, Kirk K. 1999. Discriminant analysis of event-related potential curves using smoothed principal components. Biometrics 55:174-81
    • (1999) Biometrics , vol.55 , pp. 174-181
    • Do, K.A.1    Kirk, K.2
  • 31
    • 0032334093 scopus 로고
    • Minimax estimation via wavelet shrinkage
    • Donoho DL, Johnstone IM. 1995. Minimax estimation via wavelet shrinkage. Ann. Stat. 26(3):879-921
    • (1995) Ann. Stat. , vol.26 , Issue.3 , pp. 879-921
    • Donoho, D.L.1    Johnstone, I.M.2
  • 32
    • 25444532788 scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers PHC, Marx BD. 1986. Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2):89-121
    • (1986) Stat. Sci. , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 33
    • 0036921859 scopus 로고    scopus 로고
    • Generalized linear additive smooth structures
    • Eilers PHC, Marx BD. 2002. Generalized linear additive smooth structures. J. Comput. Graph. Stat. 11:758-83
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 758-783
    • Eilers, P.H.C.1    Marx, B.D.2
  • 34
    • 0034355052 scopus 로고    scopus 로고
    • Two-step estimation of functional linearmodels with applications to longitudinal data
    • Fan J, Zhang JT. 2000. Two-step estimation of functional linearmodels with applications to longitudinal data. J. R. Stat. Soc. Ser. B 62:303-22
    • (2000) J. R. Stat. Soc. Ser. B , vol.62 , pp. 303-322
    • Fan, J.1    Zhang, J.T.2
  • 35
    • 84919437209 scopus 로고    scopus 로고
    • Tech. Rep. Marshall Sch. Bus., Univ. South. Calif., Los Angeles, CA
    • Fan Y, James GM, Radchenko P. 2014. Functional additive regression. Tech. Rep. Marshall Sch. Bus., Univ. South. Calif., Los Angeles, CA. http://www-bcf.usc.edu/-gareth/research/FAR.pdf
    • (2014) Functional Additive Regression
    • Fan, Y.1    James, G.M.2    Radchenko, P.3
  • 36
    • 0031197999 scopus 로고    scopus 로고
    • Regression analysis for a functional response
    • Faraway JJ. 1997. Regression analysis for a functional response. Technometrics 39:254-61
    • (1997) Technometrics , vol.39 , pp. 254-261
    • Faraway, J.J.1
  • 39
    • 78649426098 scopus 로고    scopus 로고
    • Tree-structured wavelet estimation in a mixed effects model for spectra of replicated time series
    • Freyermuth JM, Ombao H, von Sachs R. 2010. Tree-structured wavelet estimation in a mixed effects model for spectra of replicated time series. J. Am. Stat. Assoc. 105(490):634-46
    • (2010) J. Am. Stat. Assoc. , vol.105 , Issue.490 , pp. 634-646
    • Freyermuth, J.M.1    Ombao, H.2    Von Sachs, R.3
  • 41
    • 84879076970 scopus 로고    scopus 로고
    • Longitudinal scalar-on-function regression with application to tractography data
    • Gertheiss J, Goldsmith J, Crainiceanu C, Greven S. 2013. Longitudinal scalar-on-function regression with application to tractography data. Biostatistics 14(3):447-61
    • (2013) Biostatistics , vol.14 , Issue.3 , pp. 447-461
    • Gertheiss, J.1    Goldsmith, J.2    Crainiceanu, C.3    Greven, S.4
  • 42
    • 33746211333 scopus 로고    scopus 로고
    • Free-knot spline smoothing for functional data
    • Gervini D. 2006. Free-knot spline smoothing for functional data. J. R. Stat. Soc. Ser. B 68(4):671-88
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , Issue.4 , pp. 671-688
    • Gervini, D.1
  • 44
    • 84859826930 scopus 로고    scopus 로고
    • Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements
    • Goldsmith J, Crainiceanu CM, Caffo B, Reich D. 2012. Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. J. R. Stat. Soc. C 61(3):453-69
    • (2012) J. R. Stat. Soc. C , vol.61 , Issue.3 , pp. 453-469
    • Goldsmith, J.1    Crainiceanu, C.M.2    Caffo, B.3    Reich, D.4
  • 45
    • 84901808735 scopus 로고    scopus 로고
    • Smooth scalar-on-image regression via spatial Bayesian variable selection
    • Goldsmith J, Huang L, Crainiceanu CM. 2014. Smooth scalar-on-image regression via spatial Bayesian variable selection. J. Comput. Gr. Stat. 23(1):46-64
    • (2014) J. Comput. Gr. Stat. , vol.23 , Issue.1 , pp. 46-64
    • Goldsmith, J.1    Huang, L.2    Crainiceanu, C.M.3
  • 49
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • Griffin JE, Brown PJ. 2010. Inference with normal-gamma prior distributions in regression problems. Bayesian Anal. 5:171-88
    • (2010) Bayesian Anal. , vol.5 , pp. 171-188
    • Griffin, J.E.1    Brown, P.J.2
  • 50
    • 0036185675 scopus 로고    scopus 로고
    • Functional mixed effect models
    • GuoW. 2002. Functional mixed effect models. Biometrics 58:121-28
    • (2002) Biometrics , vol.58 , pp. 121-128
    • Guo, W.1
  • 51
    • 0242595638 scopus 로고    scopus 로고
    • Smoothing splineANOVAfor time-dependent spectral analysis
    • GuoW. 2003. Smoothing splineANOVAfor time-dependent spectral analysis. J. Am. Stat. Assoc. 98(463):643-52
    • (2003) J. Am. Stat. Assoc. , vol.98 , Issue.463 , pp. 643-652
    • Guo, W.1
  • 52
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P, Marron JS, Neeman A. 2005. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. Ser. B 67:427-44
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 53
    • 0035252777 scopus 로고    scopus 로고
    • Afunctional data-analytic approach to signal discrimination
    • Hall P, PoskittDS, Presnell B. 2001.Afunctional data-analytic approach to signal discrimination. Technometrics 43:1-9
    • (2001) Technometrics , vol.43 , pp. 1-9
    • Hall, P.1    Poskitt, D.S.2    Presnell, B.3
  • 55
    • 0000180203 scopus 로고
    • Kernel regression estimation using repeated measurements data
    • Hart JD, Wehrly TE. 1986. Kernel regression estimation using repeated measurements data. J. Am. Stat. Assoc. 81:1080-88
    • (1986) J. Am. Stat. Assoc. , vol.81 , pp. 1080-1088
    • Hart, J.D.1    Wehrly, T.E.2
  • 56
    • 0000467952 scopus 로고
    • A statistical view of some chemometrics regression tools: Discussion
    • Hastie T, Mallows C. 1993. [A statistical view of some chemometrics regression tools]: Discussion. Technology 35(2):140-43
    • (1993) Technology , vol.35 , Issue.2 , pp. 140-143
    • Hastie, T.1    Mallows, C.2
  • 57
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie T, Tibshirani R. 1986. Generalized additive models. Stat. Sci. 1(3):297-318
    • (1986) Stat. Sci. , vol.1 , Issue.3 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.2
  • 59
    • 80054705939 scopus 로고    scopus 로고
    • Wavelet-based functional mixed model analysis: Computational considerations
    • Alexandria, VA: Am. Stat. Assoc
    • Herrick RC,Morris JS. 2006. Wavelet-based functional mixed model analysis: computational considerations. Joint Stat. Meet. 2006 Proc., ASA Sect. Stat. Comput., Seattle, pp. 2051-53. Alexandria, VA: Am. Stat. Assoc.
    • (2006) Joint Stat. Meet. 2006 Proc., ASA Sect. Stat. Comput., Seattle , pp. 2051-2053
    • Herrick, R.C.1    Morris, J.S.2
  • 61
    • 77956802000 scopus 로고    scopus 로고
    • Modeling complex phenotypes: Generalized linear models using spectrogram predictors of animal communication signals
    • Holan SH, Wikle CK, Sullivan-Beckers LE, Cocroft RB. 2010. Modeling complex phenotypes: generalized linear models using spectrogram predictors of animal communication signals. Biometrics 66(3):914-24
    • (2010) Biometrics , vol.66 , Issue.3 , pp. 914-924
    • Holan, S.H.1    Wikle, C.K.2    Sullivan-Beckers, L.E.3    Cocroft, R.B.4
  • 62
    • 33746302303 scopus 로고    scopus 로고
    • Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data
    • Hoover DR,Rice JA,WuCO, YangLP. 1998. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809-22
    • (1998) Biometrika , vol.85 , pp. 809-822
    • Hoover, D.R.1    Rice, J.A.2    Wu, C.O.3    Yang, L.P.4
  • 63
    • 8644255231 scopus 로고    scopus 로고
    • Polynomial spline estimation and inference for varying coefficient models with longitudinal data
    • Huang JZ, Wu CO, Zhou L. 2004. Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat. Sin. 14:763-88
    • (2004) Stat. Sin. , vol.14 , pp. 763-788
    • Huang, J.Z.1    Wu, C.O.2    Zhou, L.3
  • 65
    • 0036020889 scopus 로고    scopus 로고
    • Generalized linear models with functional predictors
    • James GM. 2002. Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B 64:411-32
    • (2002) J. R. Stat. Soc. Ser. B , vol.64 , pp. 411-432
    • James, G.M.1
  • 66
    • 0035535702 scopus 로고    scopus 로고
    • Functional linear discriminant analysis for irregularly sampled curves
    • James GM, Hastie TJ. 2001. Functional linear discriminant analysis for irregularly sampled curves. J. R. Stat. Soc. Ser. B 63:533-50
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , pp. 533-550
    • James, G.M.1    Hastie, T.J.2
  • 67
    • 0001699048 scopus 로고    scopus 로고
    • Principal component models for sparse functional data
    • James GM, Hastie TJ, Sugar CA. 2000. Principal component models for sparse functional data. Biometrika 87(3):587-602
    • (2000) Biometrika , vol.87 , Issue.3 , pp. 587-602
    • James, G.M.1    Hastie, T.J.2    Sugar, C.A.3
  • 69
    • 69049090897 scopus 로고    scopus 로고
    • Functional linear regression that's interpretable
    • James GM, Wang J, Zhu J. 2009. Functional linear regression that's interpretable. Ann. Stat. 37(5A):2083-108
    • (2009) Ann. Stat. , vol.37 , Issue.5 A , pp. 2083-2108
    • James, G.M.1    Wang, J.2    Zhu, J.3
  • 70
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal component analysis in high dimensions
    • Johnstone IM, Lu AY. 2009. On consistency and sparsity for principal component analysis in high dimensions. J. Am. Stat. Assoc. 104(486):683-93
    • (2009) J. Am. Stat. Assoc. , vol.104 , Issue.486 , pp. 683-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 71
    • 0001247934 scopus 로고
    • A note on the use of principal components in regression
    • Joliffe IT. 1982. A note on the use of principal components in regression. J. R. Stat. Soc. Ser. C 31(3):300-3
    • (1982) J. R. Stat. Soc. Ser. C , vol.31 , Issue.3 , pp. 300-303
    • Joliffe, I.T.1
  • 72
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung S, Marron J. 2009. PCA consistency in high dimension, low sample size context. Ann. Stat. 37:4104-30
    • (2009) Ann. Stat. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.2
  • 74
    • 78650221431 scopus 로고    scopus 로고
    • Recent history functional linear models for sparse longitudinal data
    • Kim K, Senturk D, Li R. 2011. Recent history functional linear models for sparse longitudinal data. J. Stat. Plan. Inference 141(4):1554-66
    • (2011) J. Stat. Plan. Inference , vol.141 , Issue.4 , pp. 1554-1566
    • Kim, K.1    Senturk, D.2    Li, R.3
  • 75
    • 12944265461 scopus 로고    scopus 로고
    • Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins
    • Koomen JM, Shih LN, Coombes KR, Li D, Xiao LC, et al. 2005. Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin. Cancer Res. 11(3):1110-18
    • (2005) Clin. Cancer Res. , vol.11 , Issue.3 , pp. 1110-1118
    • Koomen, J.M.1    Shih, L.N.2    Coombes, K.R.3    Li, D.4    Xiao, L.C.5
  • 76
    • 56049117204 scopus 로고    scopus 로고
    • Varying coefficient model with unknown withinsubject covariance for analysis of tumor growth curves
    • Krafty RT,Gimotty PA,Holtz D, Coukos G, GuoW. 2008. Varying coefficient model with unknown withinsubject covariance for analysis of tumor growth curves. Biometrics 64(4):1023-31
    • (2008) Biometrics , vol.64 , Issue.4 , pp. 1023-1031
    • Krafty, R.T.1    Gimotty, P.A.2    Holtz, D.3    Coukos, G.4    Guo, W.5
  • 77
    • 80052290463 scopus 로고    scopus 로고
    • Functional mixed effects spectral analysis
    • Krafty RT, Hall M, GuoW. 2011. Functional mixed effects spectral analysis. Biometrika 98(3):583-98
    • (2011) Biometrika , vol.98 , Issue.3 , pp. 583-598
    • Krafty, R.T.1    Hall, M.2    Guo, W.3
  • 79
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird NM, Ware JH. 1982. Random-effects models for longitudinal data. Biometrics 38(4):963-74
    • (1982) Biometrics , vol.38 , Issue.4 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 81
    • 80053443716 scopus 로고    scopus 로고
    • Sparse estimation in functional linear regression
    • Lee ER, Park BU. 2012. Sparse estimation in functional linear regression. J. Multivar. Anal. 105:1-17
    • (2012) J. Multivar. Anal. , vol.105 , pp. 1-17
    • Lee, E.R.1    Park, B.U.2
  • 82
    • 78650152868 scopus 로고    scopus 로고
    • Convergence and prediction of principal component scores in highdimensional settings
    • Lee S, Zou F, Wright FA. 2010. Convergence and prediction of principal component scores in highdimensional settings. Ann. Stat. 38:3605-29
    • (2010) Ann. Stat. , vol.38 , pp. 3605-3629
    • Lee, S.1    Zou, F.2    Wright, F.A.3
  • 85
    • 61349158633 scopus 로고    scopus 로고
    • Sharpening P-spline signal regression
    • Li B, Marx BD. 2008. Sharpening P-spline signal regression. Stat. Model. 8:367-83
    • (2008) Stat. Model. , vol.8 , pp. 367-383
    • Li, B.1    Marx, B.D.2
  • 86
    • 44349155319 scopus 로고    scopus 로고
    • Classification of functional data: A segmentation approach
    • Li B, Yu Q. 2008. Classification of functional data: a segmentation approach. Comp. Stat. Data. Anal. 52:4790-800
    • (2008) Comp. Stat. Data. Anal. , vol.52 , pp. 4790-4800
    • Li, B.1    Yu, Q.2
  • 87
    • 78650108606 scopus 로고    scopus 로고
    • Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data
    • Li Y, Hsing T. 2010. Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann. Stat. 38(6):3321-51
    • (2010) Ann. Stat. , vol.38 , Issue.6 , pp. 3321-3351
    • Li, Y.1    Hsing, T.2
  • 88
    • 78649440047 scopus 로고    scopus 로고
    • Generalized functional linear models with semiparametric single-index interactions
    • Li Y, Wang N, Carroll RJ. 2010. Generalized functional linear models with semiparametric single-index interactions. J. Am. Stat. Assoc. 105(490):621-33
    • (2010) J. Am. Stat. Assoc. , vol.105 , Issue.490 , pp. 621-633
    • Li, Y.1    Wang, N.2    Carroll, R.J.3
  • 89
    • 0142089896 scopus 로고    scopus 로고
    • The relationship between virology and immunologic responses inAIDSclinical research usingmixed-effects varying-coefficient models with measurement error
    • LiangH,WuH,Carroll RJ. 2003.The relationship between virology and immunologic responses inAIDSclinical research usingmixed-effects varying-coefficient models with measurement error. Biostatistics 4(2):297-312
    • (2003) Biostatistics , vol.4 , Issue.2 , pp. 297-312
    • Liang, H.1    Wu, H.2    Carroll, R.J.3
  • 90
    • 3543023777 scopus 로고    scopus 로고
    • Equivalent kernels of smoothing splines in nonparametric regression for longitudinal/clustered data
    • Lin X, Wang N, Welsh AH, Carroll RJ. 2004. Equivalent kernels of smoothing splines in nonparametric regression for longitudinal/clustered data. Biometrika 91(1):177-93
    • (2004) Biometrika , vol.91 , Issue.1 , pp. 177-193
    • Lin, X.1    Wang, N.2    Welsh, A.H.3    Carroll, R.J.4
  • 91
    • 84863337880 scopus 로고    scopus 로고
    • A simultaneous confidence band for sparse longitudinal regression
    • Ma Y, Yang L, Carroll RJ. 2012. A simultaneous confidence band for sparse longitudinal regression. Stat. Sin. 22:95-122
    • (2012) Stat. Sin. , vol.22 , pp. 95-122
    • Ma, Y.1    Yang, L.2    Carroll, R.J.3
  • 92
    • 0242595929 scopus 로고    scopus 로고
    • The historical functional linear model
    • Malfait N, Ramsay JO. 2003. The historical functional linear model. Can. J. Stat. 31:115-28
    • (2003) Can. J. Stat. , vol.31 , pp. 115-128
    • Malfait, N.1    Ramsay, J.O.2
  • 93
    • 77956637967 scopus 로고    scopus 로고
    • Wavelet-based functional linear mixed models: An application to measurement error-corrected distributed lag models
    • Malloy EJ, Morris JS, Adar SD, Suh HH, Gold DR, Coull BA. 2010. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models. Biostatistics 11(3):432-52
    • (2010) Biostatistics , vol.11 , Issue.3 , pp. 432-452
    • Malloy, E.J.1    Morris, J.S.2    Adar, S.D.3    Suh, H.H.4    Gold, D.R.5    Coull, B.A.6
  • 94
    • 84885020763 scopus 로고    scopus 로고
    • Robust functional linear regression based on splines
    • Maronna RA, Yohai VJ. 2013. Robust functional linear regression based on splines. Comput. Stat. Data Anal. 65:46-55
    • (2013) Comput. Stat. Data Anal. , vol.65 , pp. 46-55
    • Maronna, R.A.1    Yohai, V.J.2
  • 95
    • 77955109093 scopus 로고    scopus 로고
    • Longitudinal functional principal component modeling via stochastic approximation Monte Carlo
    • Martinez JG, Fiang F, Zhou L, Carroll RJ. 2010. Longitudinal functional principal component modeling via stochastic approximation Monte Carlo. Can. J. Stat. 38(2):256-70
    • (2010) Can. J. Stat. , vol.38 , Issue.2 , pp. 256-270
    • Martinez, J.G.1    Fiang, F.2    Zhou, L.3    Carroll, R.J.4
  • 96
    • 84890048464 scopus 로고    scopus 로고
    • A study of Mexican free-tailed bat syllables: Bayesian functional mixed modeling of nonstationary acoustic time series
    • Martinez JG, Bohn KM, Carroll RJ, Morris JS. 2013. A study of Mexican free-tailed bat syllables: Bayesian functional mixed modeling of nonstationary acoustic time series. J. Am. Stat. Assoc. 108(502):514-26
    • (2013) J. Am. Stat. Assoc. , vol.108 , Issue.502 , pp. 514-526
    • Martinez, J.G.1    Bohn, K.M.2    Carroll, R.J.3    Morris, J.S.4
  • 97
    • 0033079479 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals and curves: A P-spline approach
    • Marx BD, Eilers PHC. 1999. Generalized linear regression on sampled signals and curves: a P-spline approach. Technometrics 41(1):1-13
    • (1999) Technometrics , vol.41 , Issue.1 , pp. 1-13
    • Marx, B.D.1    Eilers, P.H.C.2
  • 98
    • 0036086103 scopus 로고    scopus 로고
    • Multivariate calibration stability: A comparison of methods
    • Marx BD, Eilers PHC. 2002. Multivariate calibration stability: a comparison of methods. J. Chemom. 16:129-40
    • (2002) J. Chemom. , vol.16 , pp. 129-140
    • Marx, B.D.1    Eilers, P.H.C.2
  • 99
    • 13444257535 scopus 로고    scopus 로고
    • Multidimensional penalized signal regression
    • Marx BD, Eilers PHC. 2005. Multidimensional penalized signal regression. Technometrics 47:13-22
    • (2005) Technometrics , vol.47 , pp. 13-22
    • Marx, B.D.1    Eilers, P.H.C.2
  • 104
    • 84864384339 scopus 로고    scopus 로고
    • Statistical methods for proteomic biomarker discovery using feature extraction or functional data analysis approaches
    • Morris JS. 2012. Statistical methods for proteomic biomarker discovery using feature extraction or functional data analysis approaches. Stat. Interface 5(1):117-36
    • (2012) Stat. Interface , vol.5 , Issue.1 , pp. 117-136
    • Morris, J.S.1
  • 105
    • 33846090391 scopus 로고    scopus 로고
    • Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study
    • Morris JS, Arroyo C, Coull BA, Ryan LM,Herrick RC, Gortmaker SL. 2006. Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: a case study. J. Am. Stat. Assoc. 101(476):1352-64
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1352-1364
    • Morris, J.S.1    Arroyo, C.2    Coull, B.A.3    Ryan, L.M.4    Herrick, R.C.5    Gortmaker, S.L.6
  • 106
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
    • Morris JS, BaladandayuthapaniV,Herrick RC, Sanna PP, Gutstein H. 2011. Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann. Appl. Stat. 5:894-923
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 894-923
    • Morris, J.S.1    Baladandayuthapani, V.2    Herrick, R.C.3    Sanna, P.P.4    Gutstein, H.5
  • 107
    • 43949121435 scopus 로고    scopus 로고
    • Bayesian analysis of mass spectrometry data using wavelet-based functional mixed models
    • Morris JS, Brown PJ, Herrick RC, Baggerly KA, Coombes KR. 2008. Bayesian analysis of mass spectrometry data using wavelet-based functional mixed models. Biometrics 12:479-89
    • (2008) Biometrics , vol.12 , pp. 479-489
    • Morris, J.S.1    Brown, P.J.2    Herrick, R.C.3    Baggerly, K.A.4    Coombes, K.R.5
  • 108
    • 33644782020 scopus 로고    scopus 로고
    • Wavelet-based functional mixed models
    • Morris JS, Carroll RJ. 2006. Wavelet-based functional mixed models. J. R. Stat. Soc. B 68(2):179-99
    • (2006) J. R. Stat. Soc. B , vol.68 , Issue.2 , pp. 179-199
    • Morris, J.S.1    Carroll, R.J.2
  • 109
    • 0242679450 scopus 로고    scopus 로고
    • Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis
    • Morris JS, Vannucci M, Brown PJ, Carroll, RJ. 2003. Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis. J. Am. Stat. Assoc. 98:573-83
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 573-583
    • Morris, J.S.1    Vannucci, M.2    Brown, P.J.3    Carroll, R.J.4
  • 110
    • 77954710902 scopus 로고    scopus 로고
    • Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data
    • Mostacci E, Truntzner C, Cardot H, Ducoroy P. 2010. Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data. Proteomics 10:2564-72
    • (2010) Proteomics , vol.10 , pp. 2564-2572
    • Mostacci, E.1    Truntzner, C.2    Cardot, H.3    Ducoroy, P.4
  • 111
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • Müller HG, Stadtmüller U. 2005. Generalized functional linear models. Ann. Stat. 33:774-805
    • (2005) Ann. Stat. , vol.33 , pp. 774-805
    • Müller, H.G.1    Stadtmüller, U.2
  • 112
    • 77955569433 scopus 로고    scopus 로고
    • Wavelet modeling of functional random effects with application to human vision data
    • Ogden RT, Greene E. 2010. Wavelet modeling of functional random effects with application to human vision data. J. Stat. Plann. Inference 140:3797-808
    • (2010) J. Stat. Plann. Inference , vol.140 , pp. 3797-3808
    • Ogden, R.T.1    Greene, E.2
  • 115
    • 33645576875 scopus 로고    scopus 로고
    • Functional mixed-effects model for periodic data
    • Qin L, Guo W. 2006. Functional mixed-effects model for periodic data. Biostatistics 7:225-34
    • (2006) Biostatistics , vol.7 , pp. 225-234
    • Qin, L.1    Guo, W.2
  • 116
    • 77955568292 scopus 로고    scopus 로고
    • A time-frequency functional model for locally stationary time series
    • Qin L, Guo W, Litt B. 2009. A time-frequency functional model for locally stationary time series. J. Comput. Graph. Stat. 18(3):675-93
    • (2009) J. Comput. Graph. Stat. , vol.18 , Issue.3 , pp. 675-693
    • Qin, L.1    Guo, W.2    Litt, B.3
  • 121
    • 84875393952 scopus 로고    scopus 로고
    • Structured penalties for functional linearmodels-partially empirical eigenvectors for regression
    • RandolphTW,Harezlak J, Feng Z. 2012. Structured penalties for functional linearmodels-partially empirical eigenvectors for regression. Elec. J. Stat. 6:323-53
    • (2012) Elec. J. Stat. , vol.6 , pp. 323-353
    • Randolph, T.W.1    Harezlak, J.2    Feng, Z.3
  • 122
    • 0002289285 scopus 로고
    • Some statistical methods for comparison of growth curves
    • Rao CR. 1958. Some statistical methods for comparison of growth curves. Biometrics 14(1):1-17
    • (1958) Biometrics , vol.14 , Issue.1 , pp. 1-17
    • Rao, C.R.1
  • 123
    • 0037197639 scopus 로고    scopus 로고
    • Functional data analysis with application to periodically stimulated foetal heart rate data
    • Ratliffe SJ, Heller GZ, Leader LR. 2002a. Functional data analysis with application to periodically stimulated foetal heart rate data. I: Functional regression. Stat. Med. 21(8):1103-14
    • (2002) I: Functional Regression. Stat. Med. , vol.21 , Issue.8 , pp. 1103-1114
    • Ratliffe, S.J.1    Heller, G.Z.2    Leader, L.R.3
  • 124
    • 0037197606 scopus 로고    scopus 로고
    • Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression
    • Ratliffe SJ, Heller GZ, Leader LR. 2002b. Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression. Stat. Med. 21(8):1115-27
    • (2002) Stat. Med. , vol.21 , Issue.8 , pp. 1115-1127
    • Ratliffe, S.J.1    Heller, G.Z.2    Leader, L.R.3
  • 125
    • 77956302041 scopus 로고    scopus 로고
    • Fast function-on-scalar regression with penalized basis expansions
    • Reiss PT, Huang L,MennesM. 2010. Fast function-on-scalar regression with penalized basis expansions. Int. J. Biostat. 6(1):28
    • (2010) Int. J. Biostat. , vol.6 , Issue.1 , pp. 28
    • Reiss, P.T.1    Huang, L.2    Mennes, M.3
  • 126
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • Reiss PT, Ogden RT. 2007. Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc. 102(479):984-96
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.479 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 127
    • 77949757564 scopus 로고    scopus 로고
    • Functional generalized linear models with images as predictors
    • Reiss PT, Ogden RT. 2010. Functional generalized linear models with images as predictors. Biometrics 66(1):61-69
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 61-69
    • Reiss, P.T.1    Ogden, R.T.2
  • 128
    • 0001597980 scopus 로고
    • Estimating themean and covariance structure nonparametrically when the data are curves
    • Rice JA, Silverman BW. 1991. Estimating themean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. B 53(1):233-43
    • (1991) J. R. Stat. Soc. B , vol.53 , Issue.1 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 129
    • 0035106736 scopus 로고    scopus 로고
    • Nonparametric mixed effects models for unequally sampled noisy curves
    • Rice JA, Wu CO. 2001. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57:253-59
    • (2001) Biometrics , vol.57 , pp. 253-259
    • Rice, J.A.1    Wu, C.O.2
  • 130
    • 84883135525 scopus 로고    scopus 로고
    • Feature extraction across individual time series observations with spikes using wavelet principal component analysis
    • Røislien J, Winje B. 2013. Feature extraction across individual time series observations with spikes using wavelet principal component analysis. Stat. Med. 32(21):3660-69
    • (2013) Stat. Med. , vol.32 , Issue.21 , pp. 3660-3669
    • Røislien, J.1    Winje, B.2
  • 132
    • 70349245263 scopus 로고    scopus 로고
    • Bayesian hierarchical functional data analysis via contaminated information priors
    • Scarpa B, Dunson DB. 2009. Bayesian hierarchical functional data analysis via contaminated information priors. Biometrics 65:772-80
    • (2009) Biometrics , vol.65 , pp. 772-780
    • Scarpa, B.1    Dunson, D.B.2
  • 135
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • Shen D, Shen H, Marron JS. 2013. Consistency of sparse PCA in high dimension, low sample size contexts. J. Multivar. Anal. 115:317-33
    • (2013) J. Multivar. Anal. , vol.115 , pp. 317-333
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 136
    • 0041111614 scopus 로고    scopus 로고
    • An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves
    • Shi M, Weiss RE, Taylor JMG. 1996. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. J. R. Stat. Soc. Ser. C 45:151-63
    • (1996) J. R. Stat. Soc. Ser. C , vol.45 , pp. 151-163
    • Shi, M.1    Weiss, R.E.2    Taylor, J.M.G.3
  • 137
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed principal component analysis by choice of norm
    • Silverman BW. 1996. Smoothed principal component analysis by choice of norm. Ann. Stat. 24:1-24
    • (1996) Ann. Stat. , vol.24 , pp. 1-24
    • Silverman, B.W.1
  • 139
    • 77749242738 scopus 로고    scopus 로고
    • Fast methods for spatially correlated multilevel functional data
    • Staicu AM, Crainiceanu CM, Carroll RJ. 2010. Fast methods for spatially correlated multilevel functional data. Biostatistics 11(2):177-94
    • (2010) Biostatistics , vol.11 , Issue.2 , pp. 177-194
    • Staicu, A.M.1    Crainiceanu, C.M.2    Carroll, R.J.3
  • 140
    • 84862843745 scopus 로고    scopus 로고
    • Modeling functional data with spatially heterogeneous shape characteristics
    • Staicu AM, Crainiceanu CM, Reich DS, Ruppert D. 2012. Modeling functional data with spatially heterogeneous shape characteristics. Biometrics 68:331-43
    • (2012) Biometrics , vol.68 , pp. 331-343
    • Staicu, A.M.1    Crainiceanu, C.M.2    Reich, D.S.3    Ruppert, D.4
  • 141
    • 0032276659 scopus 로고    scopus 로고
    • Nonparametric regression analysis of longitudinal data
    • Staniswallis JG, Lee JJ. 1998. Nonparametric regression analysis of longitudinal data. J. Am. Stat. Assoc. 93:1403-18
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1403-1418
    • Staniswallis, J.G.1    Lee, J.J.2
  • 142
    • 84858382394 scopus 로고    scopus 로고
    • Bayesian wavelet-based curve classification via discriminant analysis with Markov tree priors
    • Stingo F, Vannucci M, Downey G. 2012. Bayesian wavelet-based curve classification via discriminant analysis with Markov tree priors. Stat. Sin. 22:465-88
    • (2012) Stat. Sin. , vol.22 , pp. 465-488
    • Stingo, F.1    Vannucci, M.2    Downey, G.3
  • 145
    • 39849092686 scopus 로고    scopus 로고
    • A Bayesian model for sparse functional data
    • Thompson WK, Rosen O. 2008. A Bayesian model for sparse functional data. Biometrics 64(1):54-63
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 54-63
    • Thompson, W.K.1    Rosen, O.2
  • 146
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58:267-88
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 147
    • 35348897501 scopus 로고    scopus 로고
    • Bayesian curve classification using wavelets
    • Wang XF, Ray S, Mallick BK. 2007. Bayesian curve classification using wavelets. J. Am. Stat. Assoc. 102(479):962-73
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.479 , pp. 962-973
    • Wang, X.F.1    Ray, S.2    Mallick, B.K.3
  • 148
    • 57849100001 scopus 로고    scopus 로고
    • Assessing time-dependent association between scalp EEG and muscle activation: A functional random-effects model approach
    • Wang XF, YangQ, Fan Z, Sun CK, YueGH. 2009. Assessing time-dependent association between scalp EEG and muscle activation: a functional random-effects model approach. J. Neurosci. Methods 177:232-40
    • (2009) J. Neurosci. Methods , vol.177 , pp. 232-240
    • Wang, X.F.1    Yang, Q.2    Fan, Z.3    Sun, C.K.4    Yue, G.H.5
  • 149
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • ed. PR Krishnaiah. New York: Acad. Press
    • WoldH. 1966. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis, ed. PR Krishnaiah, pp. 383-487. New York: Acad. Press
    • (1966) Multivariate Analysis , pp. 383-487
    • Wold, H.1
  • 151
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and margin likelihood estimation of semiparametric generalized linear models
    • Wood SN. 2011. Fast stable restricted maximum likelihood and margin likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1):3-36
    • (2011) J. R. Stat. Soc. B , vol.73 , Issue.1 , pp. 3-36
    • Wood, S.N.1
  • 152
    • 0034399378 scopus 로고    scopus 로고
    • Kernel smoothing on varying coefficient models with longitudinal dependent variable
    • Wu CO, Chiang CT. 2000. Kernel smoothing on varying coefficient models with longitudinal dependent variable. Stat. Sin. 10:433-56
    • (2000) Stat. Sin. , vol.10 , pp. 433-456
    • Wu, C.O.1    Chiang, C.T.2
  • 153
    • 0032283833 scopus 로고    scopus 로고
    • Asymptotic confidence regions for kernel smoothing of the varying coefficients model
    • Wu CO, Chiang CT, Hoover DR. 1998. Asymptotic confidence regions for kernel smoothing of the varying coefficients model. J. Am. Stat. Assoc. 93:1388-402
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1388-1402
    • Wu, C.O.1    Chiang, C.T.2    Hoover, D.R.3
  • 154
    • 1542267823 scopus 로고    scopus 로고
    • Backfitting random varying-coefficients models with time-dependent smoothing covariates
    • Wu H, Liang H. 2004. Backfitting random varying-coefficients models with time-dependent smoothing covariates. Scand. J. Stat. 31:3-19
    • (2004) Scand. J. Stat. , vol.31 , pp. 3-19
    • Wu, H.1    Liang, H.2
  • 155
    • 0036745523 scopus 로고    scopus 로고
    • Local polynomical mixed-effects models for longitudinal data
    • Wu H, Zhang JT. 2002. Local polynomical mixed-effects models for longitudinal data. J. Am. Stat. Assoc. 97:883-97
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 883-897
    • Wu, H.1    Zhang, J.T.2
  • 156
    • 80052790467 scopus 로고    scopus 로고
    • Response-adaptive regression for longitudinal data
    • Wu S, Müller HG. 2011. Response-adaptive regression for longitudinal data. Biometrics 67:852-60
    • (2011) Biometrics , vol.67 , pp. 852-860
    • Wu, S.1    Müller, H.G.2
  • 157
    • 84884672556 scopus 로고    scopus 로고
    • Ecological prediction with nonlinear multivariate time-frequency functional data models
    • Yang WH, Wikle CK, Holan SH, Wildhaber ML. 2013. Ecological prediction with nonlinear multivariate time-frequency functional data models. J. Agric. Biol. Environ. Stat. 18(3):450-74
    • (2013) J. Agric. Biol. Environ. Stat. , vol.18 , Issue.3 , pp. 450-474
    • Yang, W.H.1    Wikle, C.K.2    Holan, S.H.3    Wildhaber, M.L.4
  • 158
    • 77249159873 scopus 로고    scopus 로고
    • Functional quadratic regression
    • Yao F, Müller HG. 2010. Functional quadratic regression. Biometrika 97(1):49-64
    • (2010) Biometrika , vol.97 , Issue.1 , pp. 49-64
    • Yao, F.1    Müller, H.G.2
  • 159
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • Yao F, Müller HG, Wang JL. 2005a. Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100:577-90
    • (2005) J. Am. Stat. Assoc. , vol.100 , pp. 577-590
    • Yao, F.1    Müller, H.G.2    Wang, J.L.3
  • 160
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression for longitudinal data
    • Yao F,MüllerHG, Wang JL. 2005b. Functional linear regression for longitudinal data. Ann. Stat. 33:2873-903
    • (2005) Ann. Stat. , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.G.2    Wang, J.L.3
  • 161
    • 78650085539 scopus 로고    scopus 로고
    • A reproducing kernel Hilbert space approach to functional linear regression
    • Yuan M, Cai TT. 2010. A reproducing kernel Hilbert space approach to functional linear regression. Ann. Stat. 28(6):3412-44
    • (2010) Ann. Stat. , vol.28 , Issue.6 , pp. 3412-3444
    • Yuan, M.1    Cai, T.T.2
  • 162
    • 84946357749 scopus 로고
    • An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias
    • Zellner A. 1962. An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J. Am. Stat. Assoc. 57:348-86
    • (1962) J. Am. Stat. Assoc. , vol.57 , pp. 348-386
    • Zellner, A.1
  • 163
    • 0034059777 scopus 로고    scopus 로고
    • Semiparametric regression for periodic longitudinal hormone data from multiple menstrual cycles
    • Zhang D, Lin X, Sowers MF. 2000. Semiparametric regression for periodic longitudinal hormone data from multiple menstrual cycles. Biometrics 56:31-39
    • (2000) Biometrics , vol.56 , pp. 31-39
    • Zhang, D.1    Lin, X.2    Sowers, M.F.3
  • 164
    • 34547659140 scopus 로고    scopus 로고
    • Two-stage functionalmixedmodels for evaluating the effect of longitudinal covariate profiles on a scalar outcome
    • ZhangD,Lin X, Sowers MF. 2007. Two-stage functionalmixedmodels for evaluating the effect of longitudinal covariate profiles on a scalar outcome. Biometrics 63:351-62
    • (2007) Biometrics , vol.63 , pp. 351-362
    • Zhang, D.1    Lin, X.2    Sowers, M.F.3
  • 166
    • 84865396790 scopus 로고    scopus 로고
    • Wavelet-based LASSO in functional linear regression
    • Zhao Y, Ogden RT, Reiss PT. 2012. Wavelet-based LASSO in functional linear regression. J. Comput. Gr. Stat. 21(3):600-17
    • (2012) J. Comput. Gr. Stat. , vol.21 , Issue.3 , pp. 600-617
    • Zhao, Y.1    Ogden, R.T.2    Reiss, P.T.3
  • 167
    • 50949116957 scopus 로고    scopus 로고
    • Joint modeling of paired sparse functional data using principal components
    • Zhou L, Huang JZ, Carroll RJ. 2008. Joint modeling of paired sparse functional data using principal components. Biometrika 95(3):601-19
    • (2008) Biometrika , vol.95 , Issue.3 , pp. 601-619
    • Zhou, L.1    Huang, J.Z.2    Carroll, R.J.3
  • 169
    • 80054702555 scopus 로고    scopus 로고
    • Robust, adaptive functional regression in functional mixed model framework
    • Zhu H, Brown PJ, Morris JS. 2011. Robust, adaptive functional regression in functional mixed model framework. J. Am. Stat. Assoc. 106(495):1167-79
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.495 , pp. 1167-1179
    • Zhu, H.1    Brown, P.J.2    Morris, J.S.3
  • 170
    • 84871642334 scopus 로고    scopus 로고
    • Robust classification of functional and quantitative image data using functional mixed models
    • Zhu H, Brown PJ, Morris JS. 2012. Robust classification of functional and quantitative image data using functional mixed models. Biometrics 68:1260-68
    • (2012) Biometrics , vol.68 , pp. 1260-1268
    • Zhu, H.1    Brown, P.J.2    Morris, J.S.3
  • 171
    • 78650750933 scopus 로고    scopus 로고
    • A functional generalized linear model with curve selection in cervical pre-cancer diagnosis using fluorescence spectroscopy
    • Zhu H, Cox DD. 2009. A functional generalized linear model with curve selection in cervical pre-cancer diagnosis using fluorescence spectroscopy. Optimality: Third Erich L. Lehmann Symp. 57:173-89
    • (2009) Optimality: Third Erich L. Lehmann Symp. , vol.57 , pp. 173-189
    • Zhu, H.1    Cox, D.D.2
  • 172
    • 77952974130 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for classification with selection of functional predictors
    • Zhu H, Vannucci M, Cox DD. 2010. A Bayesian hierarchical model for classification with selection of functional predictors. Biometrics 66:463-73
    • (2010) Biometrics , vol.66 , pp. 463-473
    • Zhu, H.1    Vannucci, M.2    Cox, D.D.3
  • 173
    • 84900007255 scopus 로고    scopus 로고
    • Structured functional additive regression in reproducing kernel Hilbert spaces
    • Zhu H, Yao F, Zhang HH. 2014. Structured functional additive regression in reproducing kernel Hilbert spaces. J. R. Stat. Soc. B 76(3):581-603. doi: 10.1111/rssb.12036
    • (2014) J. R. Stat. Soc. B , vol.76 , Issue.3 , pp. 581-603
    • Zhu, H.1    Yao, F.2    Zhang, H.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.