메뉴 건너뛰기




Volumn 27, Issue 6, 2017, Pages 453-463

Mitochondria and Epigenetics – Crosstalk in Homeostasis and Stress

Author keywords

[No Author keywords available]

Indexed keywords

MITOCHONDRIAL DNA;

EID: 85014136005     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2017.02.004     Document Type: Review
Times cited : (246)

References (93)
  • 1
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • Nunnari, J., Suomalainen, A., Mitochondria: in sickness and in health. Cell 148 (2012), 1145–1159.
    • (2012) Cell , vol.148 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 2
    • 84901382660 scopus 로고    scopus 로고
    • Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease
    • Wallace, D.C., Chalkia, D., Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspect. Biol., 5, 2013, a021220.
    • (2013) Cold Spring Harbor Perspect. Biol. , vol.5 , pp. a021220
    • Wallace, D.C.1    Chalkia, D.2
  • 3
    • 79961167180 scopus 로고    scopus 로고
    • Mitochondrial DNA transcription regulation and nucleoid organization
    • Rebelo, A.P., et al. Mitochondrial DNA transcription regulation and nucleoid organization. J. Inherit. Metab. Dis. 34 (2011), 941–951.
    • (2011) J. Inherit. Metab. Dis. , vol.34 , pp. 941-951
    • Rebelo, A.P.1
  • 4
    • 84969900519 scopus 로고    scopus 로고
    • Synchronized mitochondrial and cytosolic translation programs
    • Couvillion, M.T., et al. Synchronized mitochondrial and cytosolic translation programs. Nature 533 (2016), 499–503.
    • (2016) Nature , vol.533 , pp. 499-503
    • Couvillion, M.T.1
  • 5
    • 84990892316 scopus 로고    scopus 로고
    • Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein
    • Richter-Dennerlein, R., Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167 (2016), 471–483.
    • (2016) Cell , vol.167 , pp. 471-483
    • Richter-Dennerlein, R.1
  • 6
    • 84960171872 scopus 로고    scopus 로고
    • Mitonuclear communication in homeostasis and stress
    • Quiros, P.M., et al. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17 (2016), 213–226.
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 213-226
    • Quiros, P.M.1
  • 7
    • 77949678340 scopus 로고    scopus 로고
    • Chromatin structure and the inheritance of epigenetic information
    • Margueron, R., Reinberg, D., Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 11 (2010), 285–296.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 285-296
    • Margueron, R.1    Reinberg, D.2
  • 8
    • 84875149194 scopus 로고    scopus 로고
    • Regulation of nucleosome dynamics by histone modifications
    • Zentner, G.E., Henikoff, S., Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20 (2013), 259–266.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 259-266
    • Zentner, G.E.1    Henikoff, S.2
  • 9
    • 84976295085 scopus 로고    scopus 로고
    • The molecular hallmarks of epigenetic control
    • Allis, C.D., Jenuwein, T., The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17 (2016), 487–500.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 487-500
    • Allis, C.D.1    Jenuwein, T.2
  • 10
    • 77957666255 scopus 로고    scopus 로고
    • Histone methyl transferases and demethylases; can they link metabolism and transcription?
    • Teperino, R., et al. Histone methyl transferases and demethylases; can they link metabolism and transcription?. Cell Metab. 12 (2010), 321–327.
    • (2010) Cell Metab. , vol.12 , pp. 321-327
    • Teperino, R.1
  • 11
    • 84904042103 scopus 로고    scopus 로고
    • Transcriptional coregulators: fine-tuning metabolism
    • Mouchiroud, L., et al. Transcriptional coregulators: fine-tuning metabolism. Cell Metab. 20 (2014), 26–40.
    • (2014) Cell Metab. , vol.20 , pp. 26-40
    • Mouchiroud, L.1
  • 12
    • 84949624063 scopus 로고    scopus 로고
    • Protein acetylation in metabolism–metabolites and cofactors
    • Menzies, K.J., et al. Protein acetylation in metabolism–metabolites and cofactors. Nat. Rev. Endocrinol. 12 (2016), 43–60.
    • (2016) Nat. Rev. Endocrinol. , vol.12 , pp. 43-60
    • Menzies, K.J.1
  • 13
    • 84908151229 scopus 로고    scopus 로고
    • Histone core modifications regulating nucleosome structure and dynamics
    • Tessarz, P., Kouzarides, T., Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15 (2014), 703–708.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 703-708
    • Tessarz, P.1    Kouzarides, T.2
  • 14
    • 84921425001 scopus 로고    scopus 로고
    • Erasers of histone acetylation: the histone deacetylase enzymes
    • Seto, E., Yoshida, M., Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor Perspect. Biol., 6, 2014, a018713.
    • (2014) Cold Spring Harbor Perspect. Biol. , vol.6 , pp. a018713
    • Seto, E.1    Yoshida, M.2
  • 15
    • 33947532026 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes: one size doesn't fit all
    • Lee, K.K., Workman, J.L., Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8 (2007), 284–295.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 284-295
    • Lee, K.K.1    Workman, J.L.2
  • 16
    • 84930589309 scopus 로고    scopus 로고
    • Acetyl coenzyme A: a central metabolite and second messenger
    • Pietrocola, F., et al. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21 (2015), 805–821.
    • (2015) Cell Metab. , vol.21 , pp. 805-821
    • Pietrocola, F.1
  • 17
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen, K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324 (2009), 1076–1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 18
    • 84957439277 scopus 로고    scopus 로고
    • TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions
    • Martinez-Reyes, I., TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61 (2016), 199–209.
    • (2016) Mol. Cell , vol.61 , pp. 199-209
    • Martinez-Reyes, I.1
  • 20
    • 84858797950 scopus 로고    scopus 로고
    • Sirtuins as regulators of metabolism and healthspan
    • Houtkooper, R.H., et al. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13 (2012), 225–238.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 225-238
    • Houtkooper, R.H.1
  • 21
    • 84942372058 scopus 로고    scopus 로고
    • The multifaceted functions of sirtuins in cancer
    • Chalkiadaki, A., Guarente, L., The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15 (2015), 608–624.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 608-624
    • Chalkiadaki, A.1    Guarente, L.2
  • 22
    • 84937397484 scopus 로고    scopus 로고
    • Sirtuins and the metabolic hurdles in cancer
    • German, N.J., Haigis, M.C., Sirtuins and the metabolic hurdles in cancer. Current biology 25 (2015), R569–583.
    • (2015) Current biology , vol.25 , pp. R569-583
    • German, N.J.1    Haigis, M.C.2
  • 23
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai, S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403 (2000), 795–800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 24
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: a dynamic mark in health, disease and inheritance
    • Greer, E.L., Shi, Y., Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13 (2012), 343–357.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 25
    • 84879260661 scopus 로고    scopus 로고
    • A double take on bivalent promoters
    • Voigt, P., et al. A double take on bivalent promoters. Genes Dev. 27 (2013), 1318–1338.
    • (2013) Genes Dev. , vol.27 , pp. 1318-1338
    • Voigt, P.1
  • 26
    • 0029926820 scopus 로고    scopus 로고
    • S-adenosylmethionine and methylation
    • Chiang, P.K., et al. S-adenosylmethionine and methylation. FASEB J. 10 (1996), 471–480.
    • (1996) FASEB J. , vol.10 , pp. 471-480
    • Chiang, P.K.1
  • 27
    • 84994772445 scopus 로고    scopus 로고
    • One-carbon metabolism in health and disease
    • Ducker, G.S., Rabinowitz, J.D., One-carbon metabolism in health and disease. Cell Metab. 25 (2017), 27–42.
    • (2017) Cell Metab. , vol.25 , pp. 27-42
    • Ducker, G.S.1    Rabinowitz, J.D.2
  • 28
    • 84943339297 scopus 로고    scopus 로고
    • Lysine methyltransferase SETD7 (SET7/9) regulates ROS signaling through mitochondria and NFE2L2/ARE pathway
    • He, S., et al. Lysine methyltransferase SETD7 (SET7/9) regulates ROS signaling through mitochondria and NFE2L2/ARE pathway. Sci. Rep., 5, 2015, 14368.
    • (2015) Sci. Rep. , vol.5 , pp. 14368
    • He, S.1
  • 29
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi, Y., et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119 (2004), 941–953.
    • (2004) Cell , vol.119 , pp. 941-953
    • Shi, Y.1
  • 30
    • 24144462170 scopus 로고    scopus 로고
    • LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription
    • Metzger, E., et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437 (2005), 436–439.
    • (2005) Nature , vol.437 , pp. 436-439
    • Metzger, E.1
  • 31
    • 68749108259 scopus 로고    scopus 로고
    • LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer
    • Wang, Y., et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138 (2009), 660–672.
    • (2009) Cell , vol.138 , pp. 660-672
    • Wang, Y.1
  • 32
    • 25144519737 scopus 로고    scopus 로고
    • An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation
    • Lee, M.G., et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437 (2005), 432–435.
    • (2005) Nature , vol.437 , pp. 432-435
    • Lee, M.G.1
  • 33
    • 38149045693 scopus 로고    scopus 로고
    • DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression
    • Perillo, B., et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319 (2008), 202–206.
    • (2008) Science , vol.319 , pp. 202-206
    • Perillo, B.1
  • 34
    • 84902353196 scopus 로고    scopus 로고
    • LSD1 promotes oxidative metabolism of white adipose tissue
    • Duteil, D., et al. LSD1 promotes oxidative metabolism of white adipose tissue. Nat. Commun., 5, 2014, 4093.
    • (2014) Nat. Commun. , vol.5 , pp. 4093
    • Duteil, D.1
  • 35
    • 84859176881 scopus 로고    scopus 로고
    • FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
    • Hino, S., et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun., 3, 2012, 758.
    • (2012) Nat. Commun. , vol.3 , pp. 758
    • Hino, S.1
  • 36
    • 84986881095 scopus 로고    scopus 로고
    • Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation
    • Zeng, X., et al. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev. 30 (2016), 1822–1836.
    • (2016) Genes Dev. , vol.30 , pp. 1822-1836
    • Zeng, X.1
  • 37
    • 84974712382 scopus 로고    scopus 로고
    • LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program
    • Sambeat, A., et al. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program. Cell Rep. 15 (2016), 2536–2549.
    • (2016) Cell Rep. , vol.15 , pp. 2536-2549
    • Sambeat, A.1
  • 38
    • 84994824112 scopus 로고    scopus 로고
    • Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue
    • Duteil, D., et al. Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue. Cell Rep. 17 (2016), 1008–1021.
    • (2016) Cell Rep. , vol.17 , pp. 1008-1021
    • Duteil, D.1
  • 39
    • 84942926198 scopus 로고    scopus 로고
    • Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells
    • Sakamoto, A., et al. Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells. Cancer Res. 75 (2015), 1445–1456.
    • (2015) Cancer Res. , vol.75 , pp. 1445-1456
    • Sakamoto, A.1
  • 40
    • 84860215207 scopus 로고    scopus 로고
    • Molecular mechanisms and potential functions of histone demethylases
    • Kooistra, S.M., Helin, K., Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol Cell Biol. 13 (2012), 297–311.
    • (2012) Nat. Rev. Mol Cell Biol. , vol.13 , pp. 297-311
    • Kooistra, S.M.1    Helin, K.2
  • 41
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • Xiao, M., et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26 (2012), 1326–1338.
    • (2012) Genes Dev. , vol.26 , pp. 1326-1338
    • Xiao, M.1
  • 42
    • 84949679994 scopus 로고    scopus 로고
    • The histone demethylase KDM5 activates gene expression by recognizing chromatin context through its PHD reader motif
    • Liu, X., Secombe, J., The histone demethylase KDM5 activates gene expression by recognizing chromatin context through its PHD reader motif. Cell Rep. 13 (2015), 2219–2231.
    • (2015) Cell Rep. , vol.13 , pp. 2219-2231
    • Liu, X.1    Secombe, J.2
  • 43
    • 84940839674 scopus 로고    scopus 로고
    • Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells
    • Varaljai, R., et al. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells. Genes Dev. 29 (2015), 1817–1834.
    • (2015) Genes Dev. , vol.29 , pp. 1817-1834
    • Varaljai, R.1
  • 44
    • 49349114931 scopus 로고    scopus 로고
    • Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation
    • Lopez-Bigas, N., et al. Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol. Cell 31 (2008), 520–530.
    • (2008) Mol. Cell , vol.31 , pp. 520-530
    • Lopez-Bigas, N.1
  • 45
    • 84880514208 scopus 로고    scopus 로고
    • The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling
    • Sullivan, L.B., et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51 (2013), 236–248.
    • (2013) Mol. Cell , vol.51 , pp. 236-248
    • Sullivan, L.B.1
  • 46
    • 84989159124 scopus 로고    scopus 로고
    • Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition
    • Sciacovelli, M., et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537 (2016), 544–547.
    • (2016) Nature , vol.537 , pp. 544-547
    • Sciacovelli, M.1
  • 47
    • 70450239624 scopus 로고    scopus 로고
    • Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells
    • Cervera, A.M., et al. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer, 8, 2009, 89.
    • (2009) Mol. Cancer , vol.8 , pp. 89
    • Cervera, A.M.1
  • 48
    • 77951976595 scopus 로고    scopus 로고
    • JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation
    • Tanaka, Y., et al. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J. 29 (2010), 1510–1522.
    • (2010) EMBO J. , vol.29 , pp. 1510-1522
    • Tanaka, Y.1
  • 49
    • 60849115270 scopus 로고    scopus 로고
    • IDH1 and IDH2 mutations in gliomas
    • Yan, H., et al. IDH1 and IDH2 mutations in gliomas. New Eng. J. Med. 360 (2009), 765–773.
    • (2009) New Eng. J. Med. , vol.360 , pp. 765-773
    • Yan, H.1
  • 50
    • 78650019179 scopus 로고    scopus 로고
    • Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
    • Figueroa, M.E., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 (2010), 553–567.
    • (2010) Cancer Cell , vol.18 , pp. 553-567
    • Figueroa, M.E.1
  • 51
    • 84945176281 scopus 로고    scopus 로고
    • Epigenetic regulation by histone demethylases in hypoxia
    • Hancock, R.L., et al. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 7 (2015), 791–811.
    • (2015) Epigenomics , vol.7 , pp. 791-811
    • Hancock, R.L.1
  • 52
    • 84937012244 scopus 로고    scopus 로고
    • DNA methylation on N6-adenine in C elegans
    • Greer, E.L., et al. DNA methylation on N6-adenine in C elegans. Cell 161 (2015), 868–878.
    • (2015) Cell , vol.161 , pp. 868-878
    • Greer, E.L.1
  • 53
    • 84964471168 scopus 로고    scopus 로고
    • 6-adenine in mammalian embryonic stem cells
    • 6-adenine in mammalian embryonic stem cells. Nature 532 (2016), 329–333.
    • (2016) Nature , vol.532 , pp. 329-333
    • Wu, T.P.1
  • 54
    • 84875129831 scopus 로고    scopus 로고
    • DNA methylation dynamics in health and disease
    • Bergman, Y., Cedar, H., DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20 (2013), 274–281.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 274-281
    • Bergman, Y.1    Cedar, H.2
  • 55
    • 84886111619 scopus 로고    scopus 로고
    • DNA methylation age of human tissues and cell types
    • Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol., 14, 2013, R115.
    • (2013) Genome Biol. , vol.14 , pp. R115
    • Horvath, S.1
  • 56
    • 84901796479 scopus 로고    scopus 로고
    • The evidence for functional non-CpG methylation in mammalian cells
    • Patil, V., et al. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9 (2014), 823–828.
    • (2014) Epigenetics , vol.9 , pp. 823-828
    • Patil, V.1
  • 57
    • 84922621952 scopus 로고    scopus 로고
    • Function and information content of DNA methylation
    • Schubeler, D., Function and information content of DNA methylation. Nature 517 (2015), 321–326.
    • (2015) Nature , vol.517 , pp. 321-326
    • Schubeler, D.1
  • 58
    • 84906050534 scopus 로고    scopus 로고
    • Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study
    • Irvin, M.R., et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation 130 (2014), 565–572.
    • (2014) Circulation , vol.130 , pp. 565-572
    • Irvin, M.R.1
  • 59
    • 14044261409 scopus 로고    scopus 로고
    • Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues
    • Oh, S.Y., et al. Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues. J. Biol. Chem. 280 (2005), 5909–5916.
    • (2005) J. Biol. Chem. , vol.280 , pp. 5909-5916
    • Oh, S.Y.1
  • 60
    • 77952060999 scopus 로고    scopus 로고
    • Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue
    • Shore, A., et al. Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. Diabetologia 53 (2010), 1164–1173.
    • (2010) Diabetologia , vol.53 , pp. 1164-1173
    • Shore, A.1
  • 61
    • 36549039059 scopus 로고    scopus 로고
    • RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes
    • Kiskinis, E., et al. RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes. EMBO J. 26 (2007), 4831–4840.
    • (2007) EMBO J. , vol.26 , pp. 4831-4840
    • Kiskinis, E.1
  • 62
    • 84876979205 scopus 로고    scopus 로고
    • Weight loss after gastric bypass surgery in human obesity remodels promoter methylation
    • Barres, R., et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 3 (2013), 1020–1027.
    • (2013) Cell Rep. , vol.3 , pp. 1020-1027
    • Barres, R.1
  • 63
    • 84858055958 scopus 로고    scopus 로고
    • Acute exercise remodels promoter methylation in human skeletal muscle
    • Barres, R., et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15 (2012), 405–411.
    • (2012) Cell Metab. , vol.15 , pp. 405-411
    • Barres, R.1
  • 64
    • 69149087790 scopus 로고    scopus 로고
    • Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density
    • Barres, R., et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 10 (2009), 189–198.
    • (2009) Cell Metab. , vol.10 , pp. 189-198
    • Barres, R.1
  • 65
    • 84878260646 scopus 로고    scopus 로고
    • TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
    • Pastor, W.A., et al. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14 (2013), 341–356.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 341-356
    • Pastor, W.A.1
  • 66
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
    • Xu, W., et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19 (2011), 17–30.
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1
  • 67
    • 84878969599 scopus 로고    scopus 로고
    • SDH mutations establish a hypermethylator phenotype in paraganglioma
    • Letouze, E., et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer cell 23 (2013), 739–752.
    • (2013) Cancer cell , vol.23 , pp. 739-752
    • Letouze, E.1
  • 68
    • 84887086564 scopus 로고    scopus 로고
    • Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis
    • Mason, E.F., Hornick, J.L., Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis. Modern Pathol. 26 (2013), 1492–1497.
    • (2013) Modern Pathol. , vol.26 , pp. 1492-1497
    • Mason, E.F.1    Hornick, J.L.2
  • 69
    • 84877141637 scopus 로고    scopus 로고
    • The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis
    • Gilkerson, R., et al. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harbor Perspect. Biol., 5, 2013, a011080.
    • (2013) Cold Spring Harbor Perspect. Biol. , vol.5 , pp. a011080
    • Gilkerson, R.1
  • 70
    • 41249098355 scopus 로고    scopus 로고
    • The layered structure of human mitochondrial DNA nucleoids
    • Bogenhagen, D.F., et al. The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 283 (2008), 3665–3675.
    • (2008) J. Biol. Chem. , vol.283 , pp. 3665-3675
    • Bogenhagen, D.F.1
  • 71
    • 34547117627 scopus 로고    scopus 로고
    • Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance
    • Lu, B., et al. Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J. Biol. Chem. 282 (2007), 17363–17374.
    • (2007) J. Biol. Chem. , vol.282 , pp. 17363-17374
    • Lu, B.1
  • 72
    • 84941074817 scopus 로고    scopus 로고
    • Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid
    • Kukat, C., et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 11288–11293.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 11288-11293
    • Kukat, C.1
  • 73
    • 0018802805 scopus 로고
    • Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences
    • Groot, G.S., Kroon, A.M., Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. Biochim. Biophys. Acta 564 (1979), 355–357.
    • (1979) Biochim. Biophys. Acta , vol.564 , pp. 355-357
    • Groot, G.S.1    Kroon, A.M.2
  • 74
    • 0015953437 scopus 로고
    • 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells
    • Dawid, I.B., 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 184 (1974), 80–81.
    • (1974) Science , vol.184 , pp. 80-81
    • Dawid, I.B.1
  • 75
    • 0017616953 scopus 로고
    • Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation)
    • Vanyushin, B.F., Kirnos, M.D., Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim. Biophys. Acta 475 (1977), 323–336.
    • (1977) Biochim. Biophys. Acta , vol.475 , pp. 323-336
    • Vanyushin, B.F.1    Kirnos, M.D.2
  • 76
    • 0015812379 scopus 로고
    • Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation
    • Nass, M.M., Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. J. Mol. Biol. 80 (1973), 155–175.
    • (1973) J. Mol. Biol. , vol.80 , pp. 155-175
    • Nass, M.M.1
  • 77
    • 84937520803 scopus 로고    scopus 로고
    • Mitochondrial epigenetics: an overlooked layer of regulation?
    • van der Wijst, M.G., Rots, M.G., Mitochondrial epigenetics: an overlooked layer of regulation?. Trends Genet. 31 (2015), 353–356.
    • (2015) Trends Genet. , vol.31 , pp. 353-356
    • van der Wijst, M.G.1    Rots, M.G.2
  • 78
    • 79952749156 scopus 로고    scopus 로고
    • DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria
    • Shock, L.S., et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 3630–3635.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3630-3635
    • Shock, L.S.1
  • 79
    • 84866755324 scopus 로고    scopus 로고
    • Effect of aging on 5-hydroxymethylcytosine in brain mitochondria
    • Dzitoyeva, S., et al. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol. Aging 33 (2012), 2881–2891.
    • (2012) Neurobiol. Aging , vol.33 , pp. 2881-2891
    • Dzitoyeva, S.1
  • 80
    • 84882847104 scopus 로고    scopus 로고
    • Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool
    • Iacobazzi, V., et al. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol. Genet. Metab. 110 (2013), 25–34.
    • (2013) Mol. Genet. Metab. , vol.110 , pp. 25-34
    • Iacobazzi, V.1
  • 81
    • 84878138385 scopus 로고    scopus 로고
    • Mitonuclear protein imbalance as a conserved longevity mechanism
    • Houtkooper, R.H., et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497 (2013), 451–457.
    • (2013) Nature , vol.497 , pp. 451-457
    • Houtkooper, R.H.1
  • 82
    • 0037147103 scopus 로고    scopus 로고
    • Rates of behavior and aging specified by mitochondrial function during development
    • Dillin, A., et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298 (2002), 2398–2401.
    • (2002) Science , vol.298 , pp. 2398-2401
    • Dillin, A.1
  • 83
    • 78650944949 scopus 로고    scopus 로고
    • The cell-non-autonomous nature of electron transport chain-mediated longevity
    • Durieux, J., et al. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144 (2011), 79–91.
    • (2011) Cell , vol.144 , pp. 79-91
    • Durieux, J.1
  • 84
    • 76849100919 scopus 로고    scopus 로고
    • The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans
    • Haynes, C.M., et al. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. cell 37 (2010), 529–540.
    • (2010) Mol. cell , vol.37 , pp. 529-540
    • Haynes, C.M.1
  • 85
    • 84864744900 scopus 로고    scopus 로고
    • Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
    • Nargund, A.M., et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337 (2012), 587–590.
    • (2012) Science , vol.337 , pp. 587-590
    • Nargund, A.M.1
  • 86
    • 33748901113 scopus 로고    scopus 로고
    • Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
    • Benedetti, C., et al. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174 (2006), 229–239.
    • (2006) Genetics , vol.174 , pp. 229-239
    • Benedetti, C.1
  • 87
    • 34848861368 scopus 로고    scopus 로고
    • ClpP mediates activation of a mitochondrial unfolded protein response in C elegans
    • Haynes, C.M., et al. ClpP mediates activation of a mitochondrial unfolded protein response in C elegans. Dev. cell 13 (2007), 467–480.
    • (2007) Dev. cell , vol.13 , pp. 467-480
    • Haynes, C.M.1
  • 88
    • 35648947912 scopus 로고    scopus 로고
    • Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans
    • Rea, S.L., et al. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol., 5, 2007, e259.
    • (2007) PLoS Biol. , vol.5 , pp. e259
    • Rea, S.L.1
  • 89
    • 84964588008 scopus 로고    scopus 로고
    • Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt)
    • Tian, Y., et al. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell 165 (2016), 1197–1208.
    • (2016) Cell , vol.165 , pp. 1197-1208
    • Tian, Y.1
  • 90
    • 84964570084 scopus 로고    scopus 로고
    • Two conserved histone demethylases regulate mitochondrial stress-induced longevity
    • Merkwirth, C., et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165 (2016), 1209–1223.
    • (2016) Cell , vol.165 , pp. 1209-1223
    • Merkwirth, C.1
  • 91
    • 84939493473 scopus 로고    scopus 로고
    • Repression of the heat shock response is a programmed event at the onset of reproduction
    • Labbadia, J., Morimoto, R.I., Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. cell 59 (2015), 639–650.
    • (2015) Mol. cell , vol.59 , pp. 639-650
    • Labbadia, J.1    Morimoto, R.I.2
  • 92
    • 84878797603 scopus 로고    scopus 로고
    • Epigenetic silencing mediates mitochondria stress-induced longevity
    • Schroeder, E.A., et al. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17 (2013), 954–964.
    • (2013) Cell Metab. , vol.17 , pp. 954-964
    • Schroeder, E.A.1
  • 93
    • 84878864199 scopus 로고    scopus 로고
    • The hallmarks of aging
    • Lopez-Otin, C., et al. The hallmarks of aging. Cell 153 (2013), 1194–1217.
    • (2013) Cell , vol.153 , pp. 1194-1217
    • Lopez-Otin, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.