-
1
-
-
24144462170
-
LSD1 demethylates repressive histone marks to promote androgen-receptor- dependent transcription
-
DOI 10.1038/nature04020, PII N04020
-
Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436-439 (2005). (Pubitemid 41613508)
-
(2005)
Nature
, vol.437
, Issue.7057
, pp. 436-439
-
-
Metzger, E.1
Wissmann, M.2
Yin, N.3
Muller, J.M.4
Schneider, R.5
Peters, A.H.F.M.6
Gunther, T.7
Buettner, R.8
Schule, R.9
-
2
-
-
11144332565
-
Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
-
DOI 10.1016/j.cell.2004.12.012, PII S0092867404011997
-
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 (2004). (Pubitemid 40037608)
-
(2004)
Cell
, vol.119
, Issue.7
, pp. 941-953
-
-
Shi, Y.1
Lan, F.2
Matson, C.3
Mulligan, P.4
Whetstine, J.R.5
Cole, P.A.6
Casero, R.A.7
Shi, Y.8
-
3
-
-
58149156264
-
The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation
-
Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125-129 (2009).
-
(2009)
Nat. Genet
, vol.41
, pp. 125-129
-
-
Wang, J.1
-
4
-
-
34247348215
-
Opposing LSD1 complexes function in developmental gene activation and repression programmes
-
DOI 10.1038/nature05671, PII NATURE05671
-
Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882-887 (2007). (Pubitemid 46633160)
-
(2007)
Nature
, vol.446
, Issue.7138
, pp. 882-887
-
-
Wang, J.1
Scully, K.2
Zhu, X.3
Cai, L.4
Zhang, J.5
Prefontaine, G.G.6
Krones, A.7
Ohgi, K.A.8
Zhu, P.9
Garcia-Bassets, I.10
Liu, F.11
Taylor, H.12
Lozach, J.13
Jayes, F.L.14
Korach, K.S.15
Glass, C.K.16
Fu, X.-D.17
Rosenfeld, M.G.18
-
5
-
-
78049357469
-
Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability
-
Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851-4863 (2010).
-
(2010)
Mol. Cell. Biol
, vol.30
, pp. 4851-4863
-
-
Foster, C.T.1
-
6
-
-
79952614013
-
Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A
-
Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594-607 (2011).
-
(2011)
Genes Dev
, vol.25
, pp. 594-607
-
-
MacFarlan, T.S.1
-
7
-
-
84860340335
-
Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy
-
Chen, Y., Jie, W., Yan, W., Zhou, K. & Xiao, Y. Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy. Crit. Rev. Eukaryot. Gene. Expr. 22, 53-59 (2012).
-
(2012)
Crit. Rev. Eukaryot. Gene. Expr
, vol.22
, pp. 53-59
-
-
Chen, Y.1
Jie, W.2
Yan, W.3
Zhou, K.4
Xiao, Y.5
-
8
-
-
68749108259
-
LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer
-
Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660-672 (2009).
-
(2009)
Cell
, vol.138
, pp. 660-672
-
-
Wang, Y.1
-
9
-
-
77956913456
-
Histone demethylase LSD1 regulates adipogenesis
-
Musri, M. M. et al. Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034-30041 (2010).
-
(2010)
J. Biol. Chem
, vol.285
, pp. 30034-30041
-
-
Musri, M.M.1
-
10
-
-
84859176881
-
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
-
Hino, S. et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758 (2012).
-
(2012)
Nat. Commun
, vol.3
, Issue.758
-
-
Hino, S.1
-
11
-
-
76049130230
-
Recruitment of brown fat and conversion of white into brown adipocytes: Strategies to fight the metabolic complications of obesity?
-
Langin, D. Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochim. Biophys. Acta 1801, 372-376 (2010).
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 372-376
-
-
Langin, D.1
-
12
-
-
0033214039
-
The bioenergetics of brown fat mitochondria from UCP1-ablated mice. Ucp1 is not involved in fatty acid-induced de-energization ('uncoupling')
-
Matthias, A., Jacobsson, A., Cannon, B. & Nedergaard, J. The bioenergetics of brown fat mitochondria from UCP1-ablated mice. Ucp1 is not involved in fatty acid-induced de-energization ('uncoupling'). J. Biol. Chem. 274, 28150-28160 (1999).
-
(1999)
J. Biol. Chem
, vol.274
, pp. 28150-28160
-
-
Matthias, A.1
Jacobsson, A.2
Cannon, B.3
Nedergaard, J.4
-
13
-
-
0032996040
-
Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1- deficient mice is GDP insensitive
-
39-6
-
Monemdjou, S., Kozak, L. P. & Harper, M. E. Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1-deficient mice is GDP insensitive. Am. J. Physiol. 276, E1073-E1082 (1999). (Pubitemid 29323423)
-
(1999)
American Journal of Physiology - Endocrinology and Metabolism
, vol.276
, Issue.6
-
-
Monemdjou, S.1
Kozak, L.P.2
Harper, M.-E.3
-
14
-
-
0025260137
-
Brown adipose tissue thermogenesis: Interdisciplinary studies
-
Himms-Hagen, J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4, 2890-2898 (1990). (Pubitemid 120012535)
-
(1990)
FASEB Journal
, vol.4
, Issue.11
, pp. 2890-2898
-
-
Himms-Hagen, J.1
-
15
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher, F. M. et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271-281 (2012).
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
-
16
-
-
77950245008
-
Transcriptional control of brown fat development
-
Kajimura, S., Seale, P. & Spiegelman, B. M. Transcriptional control of brown fat development. Cell. Metab. 11, 257-262 (2010).
-
(2010)
Cell. Metab
, vol.11
, pp. 257-262
-
-
Kajimura, S.1
Seale, P.2
Spiegelman, B.M.3
-
17
-
-
78650945931
-
Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
-
Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96-105 (2011).
-
(2011)
J. Clin. Invest
, vol.121
, pp. 96-105
-
-
Seale, P.1
-
18
-
-
25144489034
-
3-adrenergic receptor activation
-
DOI 10.1152/ajpendo.00009.2005 52-4
-
Granneman, J. G., Li, P., Zhu, Z. & Lu, Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 289, E608-E616 (2005). (Pubitemid 41356082)
-
(2005)
American Journal of Physiology - Endocrinology and Metabolism
, vol.289
, Issue.4
-
-
Granneman, J.G.1
Li, P.2
Zhu, Z.3
Lu, Y.4
-
19
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
DOI 10.1152/physrev.00025.2007
-
Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611-638 (2008). (Pubitemid 351520089)
-
(2008)
Physiological Reviews
, vol.88
, Issue.2
, pp. 611-638
-
-
Scarpulla, R.C.1
-
20
-
-
0037326196
-
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
-
DOI 10.1210/er.2002-0012
-
Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78-90 (2003). (Pubitemid 36223280)
-
(2003)
Endocrine Reviews
, vol.24
, Issue.1
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
21
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
DOI 10.1016/S0092-8674(00)80611-X
-
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124 (1999). (Pubitemid 29331201)
-
(1999)
Cell
, vol.98
, Issue.1
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
Spiegelman, B.M.11
-
22
-
-
36849085935
-
Essential role of mitochondrial function in adiponectin synthesis in adipocytes
-
Koh, E. H. et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56, 2973-2981 (2007).
-
(2007)
Diabetes
, vol.56
, pp. 2973-2981
-
-
Koh, E.H.1
-
23
-
-
84887441416
-
FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1
-
Nakamura, Y., Sato, T., Shiimura, Y., Miura, Y. & Kojima, M. FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1. Biochem. Biophys. Res. Commun. 441, 42-46 (2013).
-
(2013)
Biochem. Biophys. Res. Commun
, vol.441
, pp. 42-46
-
-
Nakamura, Y.1
Sato, T.2
Shiimura, Y.3
Miura, Y.4
Kojima, M.5
-
24
-
-
79959601726
-
Intracellular fatty acids suppress beta-adrenergic induction of PKA-targeted gene expression in white adipocytes
-
Mottillo, E. P. & Granneman, J. G. Intracellular fatty acids suppress beta-adrenergic induction of PKA-targeted gene expression in white adipocytes. Am. J. Physiol. Endocrinol. Metab. 301, E122-E131 (2011).
-
(2011)
Am. J. Physiol. Endocrinol. Metab
, vol.301
-
-
Mottillo, E.P.1
Granneman, J.G.2
-
25
-
-
77952567987
-
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
-
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 576-589
-
-
Heinz, S.1
-
26
-
-
9144229185
-
Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle
-
DOI 10.1073/pnas.2536828100
-
He, W. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl Acad. Sci. USA 100, 15712-15717 (2003). (Pubitemid 38021055)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.26
, pp. 15712-15717
-
-
He, W.1
Barak, Y.2
Hevener, A.3
Olson, P.4
Liao, D.5
Le, J.6
Nelson, M.7
Ong, E.8
Olefsky, J.M.9
Evans, R.M.10
-
27
-
-
84871889884
-
Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues
-
Shan, T., Liu, W. & Kuang, S. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J. 27, 277-287 (2013).
-
(2013)
FASEB J.
, vol.27
, pp. 277-287
-
-
Shan, T.1
Liu, W.2
Kuang, S.3
-
28
-
-
33845864967
-
Adipocytes as regulators of energy balance and glucose homeostasis
-
DOI 10.1038/nature05483, PII NATURE05483
-
Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-853 (2006). (Pubitemid 46024991)
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 847-853
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
29
-
-
34347326271
-
Transcriptional Control of Brown Fat Determination by PRDM16
-
DOI 10.1016/j.cmet.2007.06.001, PII S155041310700157X
-
Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38-54 (2007). (Pubitemid 47008902)
-
(2007)
Cell Metabolism
, vol.6
, Issue.1
, pp. 38-54
-
-
Seale, P.1
Kajimura, S.2
Yang, W.3
Chin, S.4
Rohas, L.M.5
Uldry, M.6
Tavernier, G.7
Langin, D.8
Spiegelman, B.M.9
-
30
-
-
78649799494
-
Prolonged Nrf1 overexpression triggers adipocyte inflammation and insulin resistance
-
van Tienen, F. H., Lindsey, P. J., van der Kallen, C. J. & Smeets, H. J. Prolonged Nrf1 overexpression triggers adipocyte inflammation and insulin resistance. J. Cell. Biochem. 111, 1575-1585 (2010).
-
(2010)
J. Cell. Biochem
, vol.111
, pp. 1575-1585
-
-
Van Tienen, F.H.1
Lindsey, P.J.2
Van Der Kallen, C.J.3
Smeets, H.J.4
-
31
-
-
84888236503
-
Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions
-
Benner, C. et al. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genet. 9, e1003906 (2013).
-
(2013)
PLoS Genet
, vol.9
-
-
Benner, C.1
-
32
-
-
78049438081
-
The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles
-
Duteil, D. et al. The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles. Cell Metab. 12, 496-508 (2010).
-
(2010)
Cell Metab
, vol.12
, pp. 496-508
-
-
Duteil, D.1
-
33
-
-
84893006653
-
Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells
-
Zhu, D. et al. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat. Commun. 5, 3174 (2014).
-
(2014)
Nat. Commun
, vol.5
, pp. 3174
-
-
Zhu, D.1
-
34
-
-
0035138072
-
Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits
-
DOI 10.1038/84818
-
Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181-186 (2001). (Pubitemid 32157445)
-
(2001)
Nature Genetics
, vol.27
, Issue.2
, pp. 181-186
-
-
Puccio, H.1
Simon, D.2
Cossee, M.3
Criqui-Filipe, P.4
Tiziano, F.5
Melki, J.6
Hindelang, C.7
Matyas, R.8
Rustin, P.9
Koenig, M.10
-
35
-
-
0037184960
-
SRC-1 and TIF2 control energy balance between white and brown adipose tissues
-
DOI 10.1016/S0092-8674(02)01169-8
-
Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931-941 (2002). (Pubitemid 36044686)
-
(2002)
Cell
, vol.111
, Issue.7
, pp. 931-941
-
-
Picard, F.1
Gehin, M.2
Annicotte, J.-S.3
Rocchi, S.4
Champy, M.-F.5
O'Malley, B.W.6
Chambon, P.7
Auwerx, J.8
-
36
-
-
41049094208
-
High-throughput real-time quantitative reverse transcription PCR
-
Bookout, A. L., Cummins, C. L., Mangelsdorf, D. J., Pesola, J. M. & Kramer, M. F. High-throughput real-time quantitative reverse transcription PCR. Curr. Protoc. Mol. Biol. Chapter 15(Unit 15): 18 (2006).
-
(2006)
Curr. Protoc. Mol. Biol. Chapter 15(Unit 15)
, pp. 18
-
-
Bookout, A.L.1
Cummins, C.L.2
Mangelsdorf, D.J.3
Pesola, J.M.4
Kramer, M.F.5
-
37
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
-
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578 (2012).
-
(2012)
Nat. Protoc
, vol.7
, pp. 562-578
-
-
Trapnell, C.1
-
38
-
-
41149085992
-
Small-sample estimation of negative binomial dispersion, with applications to SAGE data
-
DOI 10.1093/biostatistics/kxm030
-
Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321-332 (2008). (Pubitemid 351438556)
-
(2008)
Biostatistics
, vol.9
, Issue.2
, pp. 321-332
-
-
Robinson, M.D.1
Smyth, G.K.2
-
39
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
-
(2010)
Genome Biol
, vol.11
-
-
Anders, S.1
Huber, W.2
-
40
-
-
37749026136
-
Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation
-
Metzger, E. et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell. Biol. 10, 53-60 (2008).
-
(2008)
Nat. Cell. Biol
, vol.10
, pp. 53-60
-
-
Metzger, E.1
-
41
-
-
62349130698
-
Ultrafast and memoryefficient alignment of short DNA sequences to the human genome
-
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
-
(2009)
Genome Biol
, vol.10
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
42
-
-
53849146020
-
Model-based analysis of ChIP-Seq (MACS)
-
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
-
(2008)
Genome Biol
, vol.9
-
-
Zhang, Y.1
-
43
-
-
84875634162
-
Integrative Genomics Viewer (IGV): High-performance Genomics Data Visualization and Exploration
-
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178-192 (2012).
-
(2012)
Brief Bioinform
, vol.14
, pp. 178-192
-
-
Thorvaldsdottir, H.1
Robinson, J.T.2
Mesirov, J.P.3
-
44
-
-
78651166782
-
Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis
-
Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375-380 (1964).
-
(1964)
J. Biol. Chem
, vol.239
, pp. 375-380
-
-
Rodbell, M.1
-
45
-
-
0035823625
-
Distinct transcriptional profiles of adipogenesis in vivo and in vitro
-
Soukas, A., Socci, N. D., Saatkamp, B. D., Novelli, S. & Friedman, J. M. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J. Biol. Chem. 276, 34167-34174 (2001).
-
(2001)
J. Biol. Chem
, vol.276
, pp. 34167-34174
-
-
Soukas, A.1
Socci, N.D.2
Saatkamp, B.D.3
Novelli, S.4
Friedman, J.M.5
-
46
-
-
84863219763
-
Intrinsic differences in adipocyte precursor cells from different white fat depots
-
Macotela, Y. et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61, 1691-1699 (2012).
-
(2012)
Diabetes
, vol.61
, pp. 1691-1699
-
-
MacOtela, Y.1
|