-
1
-
-
84924326097
-
Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia
-
Ables, G. P., Ouattara, A., Hampton, T. G., Cooke, D., Perodin, F., Augie, I., et al. (2015). Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia. Sci. Rep. 5:8886. doi: 10.1038/srep08886
-
(2015)
Sci. Rep
, vol.5
, pp. 8886
-
-
Ables, G.P.1
Ouattara, A.2
Hampton, T.G.3
Cooke, D.4
Perodin, F.5
Augie, I.6
-
2
-
-
0036800025
-
Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse
-
Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K., and Meyers, E. N. (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129, 4613-4625
-
(2002)
Development
, vol.129
, pp. 4613-4625
-
-
Abu-Issa, R.1
Smyth, G.2
Smoak, I.3
Yamamura, K.4
Meyers, E.N.5
-
3
-
-
84965145976
-
Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure
-
Andersen, I. A., Huntley, B. K., Sandberg, S. S., Heublein, D. M., and Burnett, J. C. Jr. (2016). Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol. Dial. Transplant. 31, 767-772. doi: 10.1093/ndt/gfv398
-
(2016)
Nephrol. Dial. Transplant
, vol.31
, pp. 767-772
-
-
Andersen, I.A.1
Huntley, B.K.2
Sandberg, S.S.3
Heublein, D.M.4
Burnett, J.C.5
-
4
-
-
84962448787
-
Genetic insights into the mechanisms of Fgf signaling
-
Brewer, J. R., Mazot, P., and Soriano, P. (2016). Genetic insights into the mechanisms of Fgf signaling. Genes Dev. 30, 751-771. doi: 10.1101/gad.277137.115
-
(2016)
Genes Dev
, vol.30
, pp. 751-771
-
-
Brewer, J.R.1
Mazot, P.2
Soriano, P.3
-
5
-
-
84925456768
-
Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction
-
Carter, E. P., Fearon, A. E., and Grose, R. P. (2015). Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol. 25, 221-233. doi: 10.1016/j.tcb.2014.11.003
-
(2015)
Trends Cell Biol
, vol.25
, pp. 221-233
-
-
Carter, E.P.1
Fearon, A.E.2
Grose, R.P.3
-
6
-
-
78650824203
-
Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells
-
Chan, S. S., Li, H. J., Hsueh, Y. C., Lee, D. S., Chen, J. H., Hwang, S. M., et al. (2010). Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells. PLoS ONE 5:e14414. doi: 10.1371/journal.pone.0014414
-
(2010)
PLoS ONE
, vol.5
-
-
Chan, S.S.1
Li, H.J.2
Hsueh, Y.C.3
Lee, D.S.4
Chen, J.H.5
Hwang, S.M.6
-
7
-
-
0034956610
-
Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme
-
Colvin, J. S., White, A. C., Pratt, S. J., and Ornitz, D. M. (2001). Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128, 2095-2106
-
(2001)
Development
, vol.128
, pp. 2095-2106
-
-
Colvin, J.S.1
White, A.C.2
Pratt, S.J.3
Ornitz, D.M.4
-
8
-
-
84955209323
-
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23
-
Degirolamo, C., Sabbà, C., and Moschetta, A. (2016). Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15, 51-69. doi: 10.1038/nrd.2015.9
-
(2016)
Nat. Rev. Drug Discov
, vol.15
, pp. 51-69
-
-
Degirolamo, C.1
Sabbà, C.2
Moschetta, A.3
-
9
-
-
84926621219
-
Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts
-
Di Lisa, F., and Itoh, N. (2015). Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts. Cardiovasc. Res. 106, 1-3. doi: 10.1093/cvr/cvv050
-
(2015)
Cardiovasc. Res
, vol.106
, pp. 1-3
-
-
Di Lisa, F.1
Itoh, N.2
-
10
-
-
84941730217
-
Fibroblast growth factors in cardiovascular disease: the emerging role of FGF21
-
Domouzoglou, E. M., Naka, K. K., Vlahos, A. P., Papafaklis, M. I., Michalis, L. K., Tsatsoulis, A., et al. (2015). Fibroblast growth factors in cardiovascular disease: the emerging role of FGF21. Am. J. Physiol. Heart Circ. Physiol. 309, H1029-H1038. doi: 10.1152/ajpheart.00527.2015
-
(2015)
Am. J. Physiol. Heart Circ. Physiol
, vol.309
, pp. H1029-H1038
-
-
Domouzoglou, E.M.1
Naka, K.K.2
Vlahos, A.P.3
Papafaklis, M.I.4
Michalis, L.K.5
Tsatsoulis, A.6
-
11
-
-
79954617730
-
The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart
-
Doroudgar, S., and Glembotski, C. C. (2011). The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol. Med. 17, 207-214. doi: 10.1016/j.molmed.2010.12.003
-
(2011)
Trends Mol. Med
, vol.17
, pp. 207-214
-
-
Doroudgar, S.1
Glembotski, C.C.2
-
12
-
-
84969262871
-
Update on FGF23 and Klotho signaling
-
Erben, R. G. (2016). Update on FGF23 and Klotho signaling. Mol. Cell. Endocrinol. 432, 56-65. doi: 10.1016/j.mce.2016.05.008
-
(2016)
Mol. Cell. Endocrinol
, vol.432
, pp. 56-65
-
-
Erben, R.G.1
-
13
-
-
84886398918
-
Fibroblast growth factor 23 (FGF23) gene polymorphism in children with Kawasaki syndrome (KS) and susceptibility to cardiac abnormalities
-
Falcini, F., Rigante, D., Masi, L., Covino, M., Franceschelli, F., Leoncini, G., et al. (2013). Fibroblast growth factor 23 (FGF23) gene polymorphism in children with Kawasaki syndrome (KS) and susceptibility to cardiac abnormalities. Ital. J. Pediatr. 39:69. doi: 10.1186/1824-7288-39-69
-
(2013)
Ital. J. Pediatr
, vol.39
, pp. 69
-
-
Falcini, F.1
Rigante, D.2
Masi, L.3
Covino, M.4
Franceschelli, F.5
Leoncini, G.6
-
14
-
-
84862122363
-
Fibroblast growth factor 23 and the heart
-
Faul, C. (2012). Fibroblast growth factor 23 and the heart. Curr. Opin. Nephrol. Hypertens. 21, 369-375. doi: 10.1097/MNH.0b013e32835422c4
-
(2012)
Curr. Opin. Nephrol. Hypertens
, vol.21
, pp. 369-375
-
-
Faul, C.1
-
15
-
-
80555148939
-
FGF23 induces left ventricular hypertrophy
-
Faul, C., Amaral, A. P., Oskouei, B., Hu, M. C., Sloan, A., Isakova, T., et al. (2011). FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393-4408. doi: 10.1172/JCI46122
-
(2011)
J. Clin. Invest
, vol.121
, pp. 4393-4408
-
-
Faul, C.1
Amaral, A.P.2
Oskouei, B.3
Hu, M.C.4
Sloan, A.5
Isakova, T.6
-
16
-
-
77957376253
-
Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer, K., Bookout, A. L., Ding, X., Kurosu, H., John, G. B., Wang, L., et al. (2010). Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050-2064. doi: 10.1210/me.2010-0142
-
(2010)
Mol. Endocrinol
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
Kurosu, H.4
John, G.B.5
Wang, L.6
-
17
-
-
84945942478
-
Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy
-
Grabner, A., Amaral, A. P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., et al. (2015). Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22, 1020-1032. doi: 10.1016/j.cmet.2015.09.002
-
(2015)
Cell Metab
, vol.22
, pp. 1020-1032
-
-
Grabner, A.1
Amaral, A.P.2
Schramm, K.3
Singh, S.4
Sloan, A.5
Yanucil, C.6
-
18
-
-
84881349710
-
Serum levels of fibroblast growth factor 19 are inversely associated with coronary artery disease in chinese individuals
-
Hao, Y., Zhou, J., Zhou, M., Ma, X., Lu, Z., Gao, M., et al. (2013). Serum levels of fibroblast growth factor 19 are inversely associated with coronary artery disease in chinese individuals. PLoS ONE 8:e72345. doi: 10.1371/journal.pone.0072345
-
(2013)
PLoS ONE
, vol.8
-
-
Hao, Y.1
Zhou, J.2
Zhou, M.3
Ma, X.4
Lu, Z.5
Gao, M.6
-
19
-
-
54549104778
-
Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart
-
Hotta, Y., Sasaki, S., Konishi, M., Kinoshita, H., Kuwahara, K., Nakao, K., et al. (2008). Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart. Dev. Dyn. 237, 2947-2954. doi: 10.1002/dvdy.21726
-
(2008)
Dev. Dyn
, vol.237
, pp. 2947-2954
-
-
Hotta, Y.1
Sasaki, S.2
Konishi, M.3
Kinoshita, H.4
Kuwahara, K.5
Nakao, K.6
-
20
-
-
78049438071
-
Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated kinase
-
House, S. L., House, B. E., Glascock, B., Kimball, T., Nusayr, E., Schultz, J. E. J., et al. (2010). Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated kinase. Mol. Cell. Pharmacol. 2, 143-154. doi: 10.4255/mcpharmacol.10.20
-
(2010)
Mol. Cell. Pharmacol
, vol.2
, pp. 143-154
-
-
House, S.L.1
House, B.E.2
Glascock, B.3
Kimball, T.4
Nusayr, E.5
Schultz, J.E.J.6
-
21
-
-
85006778840
-
Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury
-
House, S. L., Wang, J., Castro, A. M., Weinheimer, C., Kovacs, A., and Ornitz, D. M. (2015). Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiol. Rep. 3:e12278. doi: 10.14814/phy2.12278
-
(2015)
Physiol. Rep
, vol.3
-
-
House, S.L.1
Wang, J.2
Castro, A.M.3
Weinheimer, C.4
Kovacs, A.5
Ornitz, D.M.6
-
22
-
-
33745367798
-
Fgf8 is required for anterior heart field development
-
Ilagan, R., Abu-Issa, R., Brown, D., Yang, Y. P., Jiao, K., Schwartz, R. J., et al. (2006). Fgf8 is required for anterior heart field development. Development 133, 2435-2445. doi: 10.1242/dev.02408
-
(2006)
Development
, vol.133
, pp. 2435-2445
-
-
Ilagan, R.1
Abu-Issa, R.2
Brown, D.3
Yang, Y.P.4
Jiao, K.5
Schwartz, R.J.6
-
23
-
-
84922393685
-
Pathophysiological impact of serum fibroblast growth factor 23 in patients with nonischemic cardiac disease and early chronic kidney disease
-
Imazu, M., Takahama, H., Asanuma, H., Funada, A., Sugano, Y., Ohara, T., et al. (2014). Pathophysiological impact of serum fibroblast growth factor 23 in patients with nonischemic cardiac disease and early chronic kidney disease. Am. J. Physiol. Heart Circ. Physiol. 307, H1504-H1511. doi: 10.1152/ajpheart.00331.2014
-
(2014)
Am. J. Physiol. Heart Circ. Physiol
, vol.307
, pp. H1504-H1511
-
-
Imazu, M.1
Takahama, H.2
Asanuma, H.3
Funada, A.4
Sugano, Y.5
Ohara, T.6
-
24
-
-
23644437321
-
Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho
-
Ito, S., Fujimori, T., Furuya, A., Satoh, J., Nabeshima, Y., and Nabeshima, Y. (2005). Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J. Clin. Invest. 115, 2202-2208. doi: 10.1172/JCI23076
-
(2005)
J. Clin. Invest
, vol.115
, pp. 2202-2208
-
-
Ito, S.1
Fujimori, T.2
Furuya, A.3
Satoh, J.4
Nabeshima, Y.5
Nabeshima, Y.6
-
25
-
-
84962910835
-
FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease
-
Itoh, N. (2016). FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev. 28, 63-69. doi: 10.1016/j.cytogfr.2015.10.001
-
(2016)
Cytokine Growth Factor Rev
, vol.28
, pp. 63-69
-
-
Itoh, N.1
-
26
-
-
85049506142
-
Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease
-
Itoh, N., Nakayama, Y., and Konishi, M. (2016). Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease. Front. Cell Dev. Biol. 4:30. doi: 10.3389/fcell.2016.00030
-
(2016)
Front. Cell Dev. Biol
, vol.4
, pp. 30
-
-
Itoh, N.1
Nakayama, Y.2
Konishi, M.3
-
27
-
-
84884536419
-
Pathophysiological roles of FGF signaling in the heart
-
Itoh, N., and Ohta, H. (2013). Pathophysiological roles of FGF signaling in the heart. Front Physiol. 4:247. doi: 10.3389/fphys.2013.00247
-
(2013)
Front Physiol
, vol.4
, pp. 247
-
-
Itoh, N.1
Ohta, H.2
-
28
-
-
84962366018
-
Endocrine FGFs: evolution, physiology, pathophysiology, and pharmacotherapy
-
Itoh, N., Ohta, H., and Konishi, M. (2015). Endocrine FGFs: evolution, physiology, pathophysiology, and pharmacotherapy. Front. Endocrinol. 6:154. doi: 10.3389/fendo.2015.00154
-
(2015)
Front. Endocrinol
, vol.6
, pp. 154
-
-
Itoh, N.1
Ohta, H.2
Konishi, M.3
-
29
-
-
84896728556
-
Cardiovascular risk factors and chronic kidney disease-FGF23: a key molecule in the cardiovascular disease
-
Jimbo, R., and Shimosawa, T. (2014). Cardiovascular risk factors and chronic kidney disease-FGF23: a key molecule in the cardiovascular disease. Int. J. Hypertens. 2014:381082. doi: 10.1155/2014/381082
-
(2014)
Int. J. Hypertens
, vol.2014
-
-
Jimbo, R.1
Shimosawa, T.2
-
30
-
-
84930179198
-
FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism
-
Joki, Y., Ohashi, K., Yuasa, D., Shibata, R., Ito, M., Matsuo, K., et al. (2015). FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem. Biophys. Res. Commun. 459, 124-130. doi: 10.1016/j.bbrc.2015.02.081
-
(2015)
Biochem. Biophys. Res. Commun
, vol.459
, pp. 124-130
-
-
Joki, Y.1
Ohashi, K.2
Yuasa, D.3
Shibata, R.4
Ito, M.5
Matsuo, K.6
-
31
-
-
84861083912
-
Cytokines in pericardial effusion of patients with inflammatory pericardial disease
-
Karatolios, K., Moosdorf, R., Maisch, B., and Pankuweit, S. (2012). Cytokines in pericardial effusion of patients with inflammatory pericardial disease. Mediators Inflamm. 2012:382082. doi: 10.1155/2012/382082
-
(2012)
Mediators Inflamm
, vol.2012
-
-
Karatolios, K.1
Moosdorf, R.2
Maisch, B.3
Pankuweit, S.4
-
32
-
-
3142765398
-
Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2
-
Kawai, T., Takahashi, T., Esaki, M., Ushikoshi, H., Nagano, S., Fujiwara, H., et al. (2004). Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68, 691-702. doi: 10.1253/circj.68.691
-
(2004)
Circ. J
, vol.68
, pp. 691-702
-
-
Kawai, T.1
Takahashi, T.2
Esaki, M.3
Ushikoshi, H.4
Nagano, S.5
Fujiwara, H.6
-
33
-
-
0029753738
-
Cytokines and cardiac hypertrophy: roles of angiotensin II and basic fibroblast growth factor
-
Kaye, D. M., Kelly, R. A., and Smith, T. W. (1996). Cytokines and cardiac hypertrophy: roles of angiotensin II and basic fibroblast growth factor. Clin. Exp. Pharmacol. Physiol. 23, S136-S141
-
(1996)
Clin. Exp. Pharmacol. Physiol
, vol.23
, pp. S136-S141
-
-
Kaye, D.M.1
Kelly, R.A.2
Smith, T.W.3
-
34
-
-
84945912355
-
FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties
-
Kharitonenkov, A., and DiMarchi, R. (2015). FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol. Metab. 26, 608-617. doi: 10.1016/j.tem.2015.09.007
-
(2015)
Trends Endocrinol. Metab
, vol.26
, pp. 608-617
-
-
Kharitonenkov, A.1
DiMarchi, R.2
-
35
-
-
84951975407
-
Association between serum fibroblast growth factor 21 and coronary artery disease in patients with type 2 diabetes
-
Kim, W. J., Kim, S. S., Lee, H. C., Song, S. H., Bae, M. J., Yi, Y. S., et al. (2015). Association between serum fibroblast growth factor 21 and coronary artery disease in patients with type 2 diabetes. J. Korean Med. Sci. 30, 586-590. doi: 10.3346/jkms.2015.30.5.586
-
(2015)
J. Korean Med. Sci
, vol.30
, pp. 586-590
-
-
Kim, W.J.1
Kim, S.S.2
Lee, H.C.3
Song, S.H.4
Bae, M.J.5
Yi, Y.S.6
-
36
-
-
84947794015
-
Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction
-
Koller, L., Kleber, M. E., Brandenburg, V. M., Goliasch, G., Richter, B., Sulzgruber, P., et al. (2015). Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 8, 1059-1067. doi: 10.1161/circheartfailure.115.002341
-
(2015)
Circ. Heart Fail
, vol.8
, pp. 1059-1067
-
-
Koller, L.1
Kleber, M.E.2
Brandenburg, V.M.3
Goliasch, G.4
Richter, B.5
Sulzgruber, P.6
-
37
-
-
79951672131
-
Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction
-
Korf-Klingebiel, M., Kempf, T., Schlüter, K. D., Willenbockel, C., Brod, T., Heineke, J., et al. (2011). Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation 12, 504-514. doi: 10.1161/CIRCULATIONAHA.110.989665
-
(2011)
Circulation
, vol.12
, pp. 504-514
-
-
Korf-Klingebiel, M.1
Kempf, T.2
Schlüter, K.D.3
Willenbockel, C.4
Brod, T.5
Heineke, J.6
-
38
-
-
84922997202
-
Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease
-
Laurell, T., Nilsson, D., Hofmeister, W., Lindstrand, A., Ahituv, N., Vandermeer, J., et al. (2014). Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Mol. Genet. Genomic Med. 2, 402-411. doi: 10.1002/mgg3.81
-
(2014)
Mol. Genet. Genomic Med
, vol.2
, pp. 402-411
-
-
Laurell, T.1
Nilsson, D.2
Hofmeister, W.3
Lindstrand, A.4
Ahituv, N.5
Vandermeer, J.6
-
39
-
-
11244306331
-
Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo
-
Lavine, K. J., Yu, K., White, A. C., Zhang, X., Smith, C., Partanen, J., et al. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev. Cell 8, 85-95. doi: 10.1016/j.devcel.2004.12.002
-
(2005)
Dev. Cell
, vol.8
, pp. 85-95
-
-
Lavine, K.J.1
Yu, K.2
White, A.C.3
Zhang, X.4
Smith, C.5
Partanen, J.6
-
40
-
-
84889591200
-
Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status
-
Lee, Y., Lim, S., Hong, E. S., Kim, J. H., Moon, M. K., Chun, E. J., et al. (2014). Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin. Endocrinol. 80, 57-64. doi: 10.1111/cen.12134
-
(2014)
Clin. Endocrinol
, vol.80
, pp. 57-64
-
-
Lee, Y.1
Lim, S.2
Hong, E.S.3
Kim, J.H.4
Moon, M.K.5
Chun, E.J.6
-
41
-
-
84983740565
-
Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease
-
Leifheit-Nestler, M., Große Siemer, R., Flasbart, K., Richter, B., Kirchhoff, F., Ziegler, W. H., et al. (2016). Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant. 31, 1088-1099. doi: 10.1093/ndt/gfv421
-
(2016)
Nephrol. Dial. Transplant
, vol.31
, pp. 1088-1099
-
-
Leifheit-Nestler, M.1
Große Siemer, R.2
Flasbart, K.3
Richter, B.4
Kirchhoff, F.5
Ziegler, W.H.6
-
42
-
-
78650850911
-
Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile
-
Lin, Z., Wu, Z., Yin, X., Liu, Y., Yan, X., Lin, S., et al. (2010). Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS ONE 5:e15534. doi: 10.1371/journal.pone.0015534
-
(2010)
PLoS ONE
, vol.5
-
-
Lin, Z.1
Wu, Z.2
Yin, X.3
Liu, Y.4
Yan, X.5
Lin, S.6
-
43
-
-
84971601634
-
Stem cells and diabetic cardiomyopathy: from pathology to therapy
-
[Epub ahead of print]
-
Liu, M., Chen, H., Jiang, J., Zhang, Z., Wang, C., Zhang, N., et al. (2016). Stem cells and diabetic cardiomyopathy: from pathology to therapy. Heart Fail. Rev. [Epub ahead of print]. doi: 10.1007/s10741-016-9565-4
-
(2016)
Heart Fail. Rev
-
-
Liu, M.1
Chen, H.2
Jiang, J.3
Zhang, Z.4
Wang, C.5
Zhang, N.6
-
44
-
-
84885168271
-
Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue
-
Liu, S. Q., Roberts, D., Kharitonenkov, A., Zhang, B., Hanson, S. M., Li, Y. C., et al. (2013). Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci. Rep. 3:2767. doi: 10.1038/srep02767
-
(2013)
Sci. Rep
, vol.3
, pp. 2767
-
-
Liu, S.Q.1
Roberts, D.2
Kharitonenkov, A.3
Zhang, B.4
Hanson, S.M.5
Li, Y.C.6
-
45
-
-
85018199714
-
Apocynin attenuates cardiac injury in type 4 cardiorenal syndrome via suppressing cardiac fibroblast growth factor-2 with oxidative stress inhibition
-
Liu, Y., Liu, Y., Liu, X., Chen, J., Zhang, K., Huang, F., et al. (2015). Apocynin attenuates cardiac injury in type 4 cardiorenal syndrome via suppressing cardiac fibroblast growth factor-2 with oxidative stress inhibition. J. Am. Heart Assoc. 4:e001598. doi: 10.1161/JAHA.114.001598
-
(2015)
J. Am. Heart Assoc
, vol.4
-
-
Liu, Y.1
Liu, Y.2
Liu, X.3
Chen, J.4
Zhang, K.5
Huang, F.6
-
46
-
-
77955885703
-
Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice
-
Lu, S. Y., Jin, Y., Li, X., Sheppard, P., Bock, M. E., Sheikh, F., et al. (2010). Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice. DNA Cell Biol. 9, 407-415. doi: 10.1089/dna.2010.1024
-
(2010)
DNA Cell Biol
, vol.9
, pp. 407-415
-
-
Lu, S.Y.1
Jin, Y.2
Li, X.3
Sheppard, P.4
Bock, M.E.5
Sheikh, F.6
-
47
-
-
46049119998
-
FGF-16 is required for embryonic heart development
-
Lu, S. Y., Sheikh, F., Sheppard, P. C., Fresnoza, A., Duckworth, M. L., Detillieux, K. A., et al. (2008). FGF-16 is required for embryonic heart development. Biochem. Biophys. Res. Commun. 373, 270-274. doi: 10.1016/j.bbrc.2008.06.029
-
(2008)
Biochem. Biophys. Res. Commun
, vol.373
, pp. 270-274
-
-
Lu, S.Y.1
Sheikh, F.2
Sheppard, P.C.3
Fresnoza, A.4
Duckworth, M.L.5
Detillieux, K.A.6
-
48
-
-
84922286250
-
Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study
-
Lutsey, P. L., Alonso, A., Selvin, E., Pankow, J. S., Michos, E. D., Agarwal, S. K., et al. (2014). Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J. Am. Heart Assoc. 3:e000936. doi: 10.1161/JAHA.114.000936
-
(2014)
J. Am. Heart Assoc
, vol.3
-
-
Lutsey, P.L.1
Alonso, A.2
Selvin, E.3
Pankow, J.S.4
Michos, E.D.5
Agarwal, S.K.6
-
49
-
-
84874903188
-
Can fibroblast growth factor (FGF)-23 circulating levels suggest coronary artery abnormalities in children with Kawasaki disease? Clin
-
Masi, L., Franceschelli, F., Leoncini, G., Gozzini, A., Rigante, D., La Torre, F., et al. (2013). Can fibroblast growth factor (FGF)-23 circulating levels suggest coronary artery abnormalities in children with Kawasaki disease? Clin. Exp. Rheumatol. 31, 149-153
-
(2013)
Exp. Rheumatol
, vol.31
, pp. 149-153
-
-
Masi, L.1
Franceschelli, F.2
Leoncini, G.3
Gozzini, A.4
Rigante, D.5
La Torre, F.6
-
50
-
-
84904599025
-
Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS)
-
Mathew, J. S., Sachs, M. C., Katz, R., Patton, K. K., Heckbert, S. R., Hoofnagle, A. N., et al. (2014). Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 130, 298-307. doi: 10.1161/CIRCULATIONAHA.113.005499
-
(2014)
Circulation
, vol.130
, pp. 298-307
-
-
Mathew, J.S.1
Sachs, M.C.2
Katz, R.3
Patton, K.K.4
Heckbert, S.R.5
Hoofnagle, A.N.6
-
51
-
-
84879421777
-
Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16
-
Matsumoto, E., Sasaki, S., Kinoshita, H., Kito, T., Ohta, H., Konishi, M., et al. (2013). Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16. Genes Cells 18, 544-553. doi: 10.1111/gtc.12055
-
(2013)
Genes Cells
, vol.18
, pp. 544-553
-
-
Matsumoto, E.1
Sasaki, S.2
Kinoshita, H.3
Kito, T.4
Ohta, H.5
Konishi, M.6
-
52
-
-
84926664583
-
Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development
-
Meganathan, K., Sotiriadou, I., Natarajan, K., Hescheler, J., and Sachinidis, A. (2015). Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int. J. Cardiol. 183, 117-128. doi: 10.1016/j.ijcard.2015.01.049
-
(2015)
Int. J. Cardiol
, vol.183
, pp. 117-128
-
-
Meganathan, K.1
Sotiriadou, I.2
Natarajan, K.3
Hescheler, J.4
Sachinidis, A.5
-
53
-
-
84886307314
-
Organogenesis of the vertebrate heart
-
Miquero, L., and Kelly, R. G. (2013). Organogenesis of the vertebrate heart. WIREs Dev. Biol. 2, 17-29. doi: 10.1002/wdev.68
-
(2013)
WIREs Dev. Biol
, vol.2
, pp. 17-29
-
-
Miquero, L.1
Kelly, R.G.2
-
54
-
-
84962606933
-
Fibroblast growth factor signaling in metabolic regulation
-
Nies, V. J., Sancar, G., Liu, W., van Zutphen, T., Struik, D., Yu, R. T., et al. (2016). Fibroblast growth factor signaling in metabolic regulation. Front. Endocrinol. 6:193. doi: 10.3389/fendo.2015.00193
-
(2016)
Front. Endocrinol
, vol.6
, pp. 193
-
-
Nies, V.J.1
Sancar, G.2
Liu, W.3
van Zutphen, T.4
Struik, D.5
Yu, R.T.6
-
55
-
-
84926520018
-
The fibroblast growth factor signaling pathway
-
Ornitz, D. M., and Itoh, N. (2015). The fibroblast growth factor signaling pathway. WIREs Dev. Biol. 4, 215-266. doi: 10.1002/wdev.176
-
(2015)
WIREs Dev. Biol
, vol.4
, pp. 215-266
-
-
Ornitz, D.M.1
Itoh, N.2
-
56
-
-
84938151232
-
Fibroblast growth factor signaling in skeletal development and disease
-
Ornitz, D. M., and Marie, P. J. (2015). Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 29, 1463-1486. doi: 10.1101/gad.266551.115
-
(2015)
Genes Dev
, vol.29
, pp. 1463-1486
-
-
Ornitz, D.M.1
Marie, P.J.2
-
57
-
-
0035661066
-
Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2
-
Pellieux, C., Foletti, A., Peduto, G., Aubert, J. F., Nussberger, J., Beermann, F., et al. (2001). Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J. Clin. Invest. 108, 1843-1851. doi: 10.1172/JCI13627
-
(2001)
J. Clin. Invest
, vol.108
, pp. 1843-1851
-
-
Pellieux, C.1
Foletti, A.2
Peduto, G.3
Aubert, J.F.4
Nussberger, J.5
Beermann, F.6
-
58
-
-
84926631640
-
Fibroblast growth factor 21 protects the heart from oxidative stress
-
Planavila, A., Redondo-Angulo, I., Ribas, F., Garrabou, G., Casademont, J., Giralt, M., et al. (2015b). Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res. 106, 19-31. doi: 10.1093/cvr/cvu263
-
(2015)
Cardiovasc. Res
, vol.106
, pp. 19-31
-
-
Planavila, A.1
Redondo-Angulo, I.2
Ribas, F.3
Garrabou, G.4
Casademont, J.5
Giralt, M.6
-
59
-
-
84955464951
-
FGF21 and cardiac physiopathology
-
Planavila, A., Redondo-Angulo, I., and Villarroya, F. (2015a). FGF21 and cardiac physiopathology. Front. Endocrinol. 6:133. doi: 10.3389/fendo.2015.00133
-
(2015)
Front. Endocrinol
, vol.6
, pp. 133
-
-
Planavila, A.1
Redondo-Angulo, I.2
Villarroya, F.3
-
60
-
-
84879666287
-
Fibroblast growth factor 21 protects against cardiac hypertrophy in mice
-
Planavila, A., Redondo, I., Hondares, E., Vinciguerra, M., Munts, C., Iglesias, R., et al. (2013). Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 4, 2019. doi: 10.1038/ncomms3019
-
(2013)
Nat. Commun
, vol.4
, pp. 2019
-
-
Planavila, A.1
Redondo, I.2
Hondares, E.3
Vinciguerra, M.4
Munts, C.5
Iglesias, R.6
-
61
-
-
84938929605
-
The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation
-
Richter, M., Lautze, H. J., Walther, T., Braun, T., Kostin, S., and Kubin, T. (2015). The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation. J. Heart Lung Transplant. 34, 1211-1214. doi: 10.1016/j.healun.2015.06.007
-
(2015)
J. Heart Lung Transplant
, vol.34
, pp. 1211-1214
-
-
Richter, M.1
Lautze, H.J.2
Walther, T.3
Braun, T.4
Kostin, S.5
Kubin, T.6
-
62
-
-
84924857741
-
FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry
-
Rochais, F., Sturny, R., Chao, C. M., Mesbah, K., Bennett, M., Mohun, T. J., et al. (2014). FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc. Res. 104, 432-442. doi: 10.1093/cvr/cvu232
-
(2014)
Cardiovasc. Res
, vol.104
, pp. 432-442
-
-
Rochais, F.1
Sturny, R.2
Chao, C.M.3
Mesbah, K.4
Bennett, M.5
Mohun, T.J.6
-
63
-
-
85055487850
-
FGF10 signaling enhances epicardial cell expansion during neonatal mouse heart repair
-
Rubin, N., Darehzereshki, A., Bellusci, S., Kaartinen, V., and Ling Lien, C. (2013). FGF10 signaling enhances epicardial cell expansion during neonatal mouse heart repair. J. Cardiovasc. Dis. Diagn. 1:101. doi: 10.4172/2329-9517.1000101
-
(2013)
J. Cardiovasc. Dis. Diagn
, vol.1
, pp. 101
-
-
Rubin, N.1
Darehzereshki, A.2
Bellusci, S.3
Kaartinen, V.4
Ling Lien, C.5
-
64
-
-
84930812429
-
Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications
-
Sadahiro, T., Yamanaka, S., and Ieda, M. (2015). Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ. Res. 116, 1378-1391. doi: 10.1161/CIRCRESAHA.116.305374
-
(2015)
Circ. Res
, vol.116
, pp. 1378-1391
-
-
Sadahiro, T.1
Yamanaka, S.2
Ieda, M.3
-
65
-
-
0032947346
-
Fgf10 is essential for limb and lung formation
-
Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., et al. (1999). Fgf10 is essential for limb and lung formation. Nat. Genet. 21, 138-141. doi: 10.1038/5096
-
(1999)
Nat. Genet
, vol.21
, pp. 138-141
-
-
Sekine, K.1
Ohuchi, H.2
Fujiwara, M.3
Yamasaki, M.4
Yoshizawa, T.5
Sato, T.6
-
66
-
-
84883118811
-
Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease
-
Shen, Y., Ma, X., Zhou, J., Pan, X., Hao, Y., Zhou, M., et al. (2013). Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc. Diabetol. 12:124. doi: 10.1186/1475-2840-12-124
-
(2013)
Cardiovasc. Diabetol
, vol.12
, pp. 124
-
-
Shen, Y.1
Ma, X.2
Zhou, J.3
Pan, X.4
Hao, Y.5
Zhou, M.6
-
67
-
-
84929466749
-
Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart
-
Singla, D. K., Singla, R. D., Abdelli, L. S., and Glass, C. (2015). Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS ONE 10:e0120739. doi: 10.1371/journal.pone.0120739
-
(2015)
PLoS ONE
, vol.10
-
-
Singla, D.K.1
Singla, R.D.2
Abdelli, L.S.3
Glass, C.4
-
68
-
-
0033565746
-
Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo
-
Sun, X., Meyers, E. N., Lewandoski, M., and Martin, G. R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834-1846. doi: 10.1101/gad.13.14.1834
-
(1999)
Genes Dev
, vol.13
, pp. 1834-1846
-
-
Sun, X.1
Meyers, E.N.2
Lewandoski, M.3
Martin, G.R.4
-
69
-
-
84929407211
-
Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling
-
Svystonyuk, D. A., Ngu, J. M., Mewhort, H. E., Lipon, B. D., Teng, G., Guzzardi, D. G., et al. (2015). Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J. Transl. Med. 13, 147. doi: 10.1186/s12967-015-0510-4
-
(2015)
J. Transl. Med
, vol.13
, pp. 147
-
-
Svystonyuk, D.A.1
Ngu, J.M.2
Mewhort, H.E.3
Lipon, B.D.4
Teng, G.5
Guzzardi, D.G.6
-
70
-
-
84943522178
-
A developmental framework for induced pluripotency
-
Takahashi, K., and Yamanaka, S. (2015). A developmental framework for induced pluripotency. Development 142, 3274-3285. doi: 10.1242/dev.114249
-
(2015)
Development
, vol.142
, pp. 3274-3285
-
-
Takahashi, K.1
Yamanaka, S.2
-
71
-
-
84962159429
-
Stem cell therapy for heart failure: ensuring regenerative proficiency
-
Terzic, A., and Behfar, A. (2016). Stem cell therapy for heart failure: ensuring regenerative proficiency. Trends Cardiovasc. Med. 26, 395-404. doi: 10.1016/j.tcm.2016.01.003
-
(2016)
Trends Cardiovasc. Med
, vol.26
, pp. 395-404
-
-
Terzic, A.1
Behfar, A.2
-
72
-
-
84989948152
-
-
Diabetes Metab. Res. Rev. [Epub ahead of print]
-
Tuñón, J., Fernández-Fernández, B., Carda, R., Pello, A. M., Cristóbal, C., Tarín, N., et al. (2016). Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in coronary artery disease patients with diabetes mellitus. Diabetes Metab. Res. Rev. [Epub ahead of print]. doi: 10.1002/dmrr.2787
-
(2016)
Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in coronary artery disease patients with diabetes mellitus
-
-
Tuñón, J.1
Fernández-Fernández, B.2
Carda, R.3
Pello, A.M.4
Cristóbal, C.5
Tarín, N.6
-
73
-
-
84951162073
-
Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders
-
Turner, C. A., Eren-Koçak, E., Inui, E. G., Watson, S. J., and Akil, H. (2016). Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin. Cell Dev. Biol. 53, 136-143. doi: 10.1016/j.semcdb.2015.10.003
-
(2016)
Semin. Cell Dev. Biol
, vol.53
, pp. 136-143
-
-
Turner, C.A.1
Eren-Koçak, E.2
Inui, E.G.3
Watson, S.J.4
Akil, H.5
-
74
-
-
79960561173
-
Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development
-
Urness, L. D., Bleyl, S. B., Wright, T. J., Moon, A. M., and Mansour, S. L. (2011). Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev. Biol. 356, 383-397. doi: 10.1016/j.ydbio.2011.05.671
-
(2011)
Dev. Biol
, vol.356
, pp. 383-397
-
-
Urness, L.D.1
Bleyl, S.B.2
Wright, T.J.3
Moon, A.M.4
Mansour, S.L.5
-
75
-
-
79960178341
-
FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium
-
Vega-Hernández, M., Kovacs, A., De Langhe, S., and Ornitz, D. M. (2011). FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development 138, 3331-3340. doi: 10.1242/dev.064410
-
(2011)
Development
, vol.138
, pp. 3331-3340
-
-
Vega-Hernández, M.1
Kovacs, A.2
De Langhe, S.3
Ornitz, D.M.4
-
76
-
-
18544374140
-
Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract
-
Vincentz, J. W., McWhirter, J. R., Murre, C., Baldini, A., and Furuta, Y. (2005). Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract. Genesis 41, 192-201. doi: 10.1002/gene.20114
-
(2005)
Genesis
, vol.41
, pp. 192-201
-
-
Vincentz, J.W.1
McWhirter, J.R.2
Murre, C.3
Baldini, A.4
Furuta, Y.5
-
77
-
-
36348982148
-
Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function
-
Virag, J. A., Rolle, M. L., Reece, J., Hardouin, S., Feigl, E. O., and Murry, C. E. (2007). Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am. J. Pathol. 171, 1431-1440. doi: 10.2353/ajpath.2007.070003
-
(2007)
Am. J. Pathol
, vol.171
, pp. 1431-1440
-
-
Virag, J.A.1
Rolle, M.L.2
Reece, J.3
Hardouin, S.4
Feigl, E.O.5
Murry, C.E.6
-
78
-
-
84923002546
-
Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection
-
Wang, J., Sontag, D., and Cattini, P. A. (2015). Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine Growth Factor Rev. 26, 59-66. doi: 10.1016/j.cytogfr.2014.07.007
-
(2015)
Cytokine Growth Factor Rev
, vol.26
, pp. 59-66
-
-
Wang, J.1
Sontag, D.2
Cattini, P.A.3
-
79
-
-
85013489156
-
Fibroblast growth factor-21 is positively associated with atrial fibrosis in atrial fibrillation patients with rheumatic heart disease
-
Wang, R., Yi, X., Li, X., and Jiang, X. (2015). Fibroblast growth factor-21 is positively associated with atrial fibrosis in atrial fibrillation patients with rheumatic heart disease. Int. J. Clin. Exp. Pathol. 8, 14901-14908
-
(2015)
Int. J. Clin. Exp. Pathol
, vol.8
, pp. 14901-14908
-
-
Wang, R.1
Yi, X.2
Li, X.3
Jiang, X.4
-
80
-
-
84925356599
-
bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway
-
Wang, Z. G., Wang, Y., Huang, Y., Lu, Q., Zheng, L., Hu, D., et al. (2015). bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci. Rep. 5:9287. doi: 10.1038/srep09287
-
(2015)
Sci. Rep
, vol.5
, pp. 9287
-
-
Wang, Z.G.1
Wang, Y.2
Huang, Y.3
Lu, Q.4
Zheng, L.5
Hu, D.6
-
81
-
-
84923458862
-
bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway
-
Wang, Z., Wang, Y., Ye, J., Lu, X., Cheng, Y., Xiang, L., et al. (2015). bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J. Cell. Mol. Med. 19, 595-607. doi: 10.1111/jcmm.12346
-
(2015)
J. Cell. Mol. Med
, vol.19
, pp. 595-607
-
-
Wang, Z.1
Wang, Y.2
Ye, J.3
Lu, X.4
Cheng, Y.5
Xiang, L.6
-
82
-
-
77649172161
-
Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries
-
Watanabe, Y., Miyagawa-Tomita, S., Vincent, S. D., Kelly, R. G., Moon, A. M., and Buckingham, M. E. (2010). Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ. Res. 106, 495-503. doi: 10.1161/CIRCRESAHA.109.201665
-
(2010)
Circ. Res
, vol.106
, pp. 495-503
-
-
Watanabe, Y.1
Miyagawa-Tomita, S.2
Vincent, S.D.3
Kelly, R.G.4
Moon, A.M.5
Buckingham, M.E.6
-
83
-
-
84971280150
-
Genetics of cardiac developmental disorders: cardiomyocyte proliferation and growth and relevance to heart failure
-
Wilsbacher, L., and McNally, E. M. (2016). Genetics of cardiac developmental disorders: cardiomyocyte proliferation and growth and relevance to heart failure. Annu. Rev. Pathol. 11, 395-419. doi: 10.1146/annurev-pathol-012615-044336
-
(2016)
Annu. Rev. Pathol
, vol.11
, pp. 395-419
-
-
Wilsbacher, L.1
McNally, E.M.2
-
84
-
-
84943418755
-
Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure
-
Wohlfahrt, P., Melenovsky, V., Kotrc, M., Benes, J., Jabor, A., Franekova, J., et al. (2015). Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail. 3, 829-839. doi: 10.1016/j.jchf.2015.05.012
-
(2015)
JACC Heart Fail
, vol.3
, pp. 829-839
-
-
Wohlfahrt, P.1
Melenovsky, V.2
Kotrc, M.3
Benes, J.4
Jabor, A.5
Franekova, J.6
-
85
-
-
84973115759
-
Fibroblast growth factor receptor 4, the missing link between chronic kidney disease and FGF23-induced left ventricular hypertrophy?
-
Wyatt, C. M., and Drüeke, T. B. (2016). Fibroblast growth factor receptor 4: the missing link between chronic kidney disease and FGF23-induced left ventricular hypertrophy? Kidney Int. 89, 7-9. doi: 10.1016/j.kint.2015.11.012
-
(2016)
Kidney Int
, vol.89
, pp. 7-9
-
-
Wyatt, C.M.1
Drüeke, T.B.2
-
86
-
-
84949531467
-
Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions
-
Yamakawa, H., Muraoka, N., Miyamoto, K., Sadahiro, T., Isomi, M., Haginiwa, S., et al. (2015). Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions. Stem Cell Reports 5, 1128-1142. doi: 10.1016/j.stemcr.2015.10.019
-
(2015)
Stem Cell Reports
, vol.5
, pp. 1128-1142
-
-
Yamakawa, H.1
Muraoka, N.2
Miyamoto, K.3
Sadahiro, T.4
Isomi, M.5
Haginiwa, S.6
-
87
-
-
84894066069
-
Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium
-
Yamasaki, S., Nabeshima, K., Sotomaru, Y., Taguchi, Y., Mukasa, H., Furue, M. K., et al. (2013). Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium. Int. J. Dev. Biol. 57, 715-724. doi: 10.1387/ijdb.130173to
-
(2013)
Int. J. Dev. Biol
, vol.57
, pp. 715-724
-
-
Yamasaki, S.1
Nabeshima, K.2
Sotomaru, Y.3
Taguchi, Y.4
Mukasa, H.5
Furue, M.K.6
-
88
-
-
84933056402
-
FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation
-
Yan, X., Chen, J., Zhang, C., Zhou, S., Zhang, Z., Chen, J., et al. (2015). FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J. Cell. Mol. Med. 19, 1557-1568. doi: 10.1111/jcmm.12530
-
(2015)
J. Cell. Mol. Med
, vol.19
, pp. 1557-1568
-
-
Yan, X.1
Chen, J.2
Zhang, C.3
Zhou, S.4
Zhang, Z.5
Chen, J.6
-
89
-
-
0034685916
-
Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4
-
Yu, C., Wang, F., Kan, M., Jin, C., Jones, R. B., Weinstein, M., et al. (2000). Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275, 15482-15489. doi: 10.1074/jbc.275.20.15482
-
(2000)
J. Biol. Chem
, vol.275
, pp. 15482-15489
-
-
Yu, C.1
Wang, F.2
Kan, M.3
Jin, C.4
Jones, R.B.5
Weinstein, M.6
-
90
-
-
84960976492
-
GATA4 regulates Fgf16 to promote heart repair after injury
-
Yu, W., Huang, X., Tian, X., Zhang, H., He, L., Wang, Y., et al. (2016). GATA4 regulates Fgf16 to promote heart repair after injury. Development 143, 936-949. doi: 10.1242/dev.130971
-
(2016)
Development
, vol.143
, pp. 936-949
-
-
Yu, W.1
Huang, X.2
Tian, X.3
Zhang, H.4
He, L.5
Wang, Y.6
-
91
-
-
84937518545
-
Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway
-
Zhang, C., Huang, Z., Gu, J., Yan, X., Lu, X., Zhou, S., et al. (2015). Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 58, 1937-1948. doi: 10.1007/s00125-015-3630-8
-
(2015)
Diabetologia
, vol.58
, pp. 1937-1948
-
-
Zhang, C.1
Huang, Z.2
Gu, J.3
Yan, X.4
Lu, X.5
Zhou, S.6
-
92
-
-
84943249540
-
Roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases
-
Zhang, F., Yu, L., Lin, X., Cheng, P., He, L., Li, X., et al. (2015). Roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol. Endocrinol. 29, 1400-1413. doi: 10.1210/me.2015-1155
-
(2015)
Mol. Endocrinol
, vol.29
, pp. 1400-1413
-
-
Zhang, F.1
Yu, L.2
Lin, X.3
Cheng, P.4
He, L.5
Li, X.6
-
93
-
-
84973520065
-
Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice
-
Zhang, J., Cheng, Y., Gu, J., Wang, S., Zhou, S., Wang, Y., et al. (2016). Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin. Sci. 130, 625-641. doi: 10.1042/CS20150623
-
(2016)
Clin. Sci
, vol.130
, pp. 625-641
-
-
Zhang, J.1
Cheng, Y.2
Gu, J.3
Wang, S.4
Zhou, S.5
Wang, Y.6
-
94
-
-
84942880588
-
Heparan sulfate biosynthesis enzyme, Ext1, contributes to outflow tract development of mouse heart via modulation of FGF signaling
-
Zhang, R., Cao, P., Yang, Z., Wang, Z., Wu, J. L., Chen, Y., et al. (2015). Heparan sulfate biosynthesis enzyme, Ext1, contributes to outflow tract development of mouse heart via modulation of FGF signaling. PLoS ONE 10:e0136518. doi: 10.1371/journal.pone.0136518
-
(2015)
PLoS ONE
, vol.10
-
-
Zhang, R.1
Cao, P.2
Yang, Z.3
Wang, Z.4
Wu, J.L.5
Chen, Y.6
|