-
1
-
-
79959990108
-
Zebrafish as a model to study cardiac development and human cardiac disease.
-
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 2011, 91:279-288.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 279-288
-
-
Bakkers, J.1
-
2
-
-
78649980258
-
Myocardial lineage development.
-
Evans SM, Yelon D, Conlon FL, Kirby ML. Myocardial lineage development. Circ Res 2010, 107:1428-1444.
-
(2010)
Circ Res
, vol.107
, pp. 1428-1444
-
-
Evans, S.M.1
Yelon, D.2
Conlon, F.L.3
Kirby, M.L.4
-
3
-
-
79958172223
-
Xenopus: an emerging model for studying congenital heart disease.
-
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: an emerging model for studying congenital heart disease. Birth Defects Res A Clin Mol Teratol 2011, 91:495-510.
-
(2011)
Birth Defects Res A Clin Mol Teratol
, vol.91
, pp. 495-510
-
-
Kaltenbrun, E.1
Tandon, P.2
Amin, N.M.3
Waldron, L.4
Showell, C.5
Conlon, F.L.6
-
4
-
-
0030926093
-
The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation.
-
Tam PPL, Parameswaran M, Kinder SJ, Weinberger RP. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 1997, 124:1631-1642.
-
(1997)
Development
, vol.124
, pp. 1631-1642
-
-
Tam, P.P.L.1
Parameswaran, M.2
Kinder, S.J.3
Weinberger, R.P.4
-
5
-
-
79960020264
-
Molecular determinants of cardiac specification.
-
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011, 91:185-195.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 185-195
-
-
Lopez-Sanchez, C.1
Garcia-Martinez, V.2
-
6
-
-
0035252357
-
Inhibition of Wnt activity induces heart formation from posterior mesoderm.
-
Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 2001, 15:316-327.
-
(2001)
Genes Dev
, vol.15
, pp. 316-327
-
-
Marvin, M.J.1
Di Rocco, G.2
Gardiner, A.3
Bush, S.M.4
Lassar, A.B.5
-
7
-
-
0037155776
-
Transcriptional regulation of vertebrate cardiac morphogenesis.
-
Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 2002, 90:509-519.
-
(2002)
Circ Res
, vol.90
, pp. 509-519
-
-
Bruneau, B.G.1
-
8
-
-
66649127942
-
Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors.
-
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459:708-711.
-
(2009)
Nature
, vol.459
, pp. 708-711
-
-
Takeuchi, J.K.1
Bruneau, B.G.2
-
9
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
-
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142:375-386.
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.D.2
Delgado-Olguin, P.3
Vedantham, V.4
Hayashi, Y.5
Bruneau, B.G.6
Srivastava, D.7
-
10
-
-
84862777974
-
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis.
-
Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 2012, 44:343-347.
-
(2012)
Nat Genet
, vol.44
, pp. 343-347
-
-
Delgado-Olguin, P.1
Huang, Y.2
Li, X.3
Christodoulou, D.4
Seidman, C.E.5
Seidman, J.G.6
Tarakhovsky, A.7
Bruneau, B.G.8
-
11
-
-
84856707310
-
Polycomb repressive complex 2 regulates normal development of the mouse heart.
-
He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 2012, 110:406-415.
-
(2012)
Circ Res
, vol.110
, pp. 406-415
-
-
He, A.1
Ma, Q.2
Cao, J.3
von Gise, A.4
Zhou, P.5
Xie, H.6
Zhang, B.7
Hsing, M.8
Christodoulou, D.C.9
Cahan, P.10
-
12
-
-
77954762643
-
Development of the enodcardium.
-
Harris IS, Black BL. Development of the enodcardium. Pediatr Cardiol 2010, 31:391-399.
-
(2010)
Pediatr Cardiol
, vol.31
, pp. 391-399
-
-
Harris, I.S.1
Black, B.L.2
-
13
-
-
80053936438
-
The heart endocardium is derived from vascular endothelial progenitors.
-
Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E. The heart endocardium is derived from vascular endothelial progenitors. Development 2011, 138:4777-4787.
-
(2011)
Development
, vol.138
, pp. 4777-4787
-
-
Milgrom-Hoffman, M.1
Harrelson, Z.2
Ferrara, N.3
Zelzer, E.4
Evans, S.M.5
Tzahor, E.6
-
14
-
-
59849120408
-
A caudal proliferating growth center contributes to both poles of the forming heart tube.
-
van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, Ruijter JM, Kirby ML, van den Hoff MJ, Moorman AF. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 2009, 104:179-188.
-
(2009)
Circ Res
, vol.104
, pp. 179-188
-
-
van den Berg, G.1
Abu-Issa, R.2
de Boer, B.A.3
Hutson, M.R.4
de Boer, P.A.5
Soufan, A.T.6
Ruijter, J.M.7
Kirby, M.L.8
van den Hoff, M.J.9
Moorman, A.F.10
-
15
-
-
33644680809
-
Building the mammalian heart from two sources of myocardial cells.
-
Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005, 6:826-835.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 826-835
-
-
Buckingham, M.1
Meilhac, S.2
Zaffran, S.3
-
16
-
-
2342518098
-
The clonal origin of myocardial cells in different regions of the embryonic mouse heart.
-
Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004, 6:685-698.
-
(2004)
Dev Cell
, vol.6
, pp. 685-698
-
-
Meilhac, S.M.1
Esner, M.2
Kelly, R.G.3
Nicolas, J.F.4
Buckingham, M.E.5
-
17
-
-
0035461911
-
The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm.
-
Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001, 1: 435-440.
-
(2001)
Dev Cell
, vol.1
, pp. 435-440
-
-
Kelly, R.G.1
Brown, N.A.2
Buckingham, M.E.3
-
18
-
-
0346783332
-
Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart.
-
Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003, 5:877-889.
-
(2003)
Dev Cell
, vol.5
, pp. 877-889
-
-
Cai, C.L.1
Liang, X.2
Shi, Y.3
Chu, P.H.4
Pfaff, S.L.5
Chen, J.6
Evans, S.7
-
19
-
-
17644382625
-
Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart.
-
Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 2005, 281:78-90.
-
(2005)
Dev Biol
, vol.281
, pp. 78-90
-
-
Waldo, K.L.1
Hutson, M.R.2
Ward, C.C.3
Zdanowicz, M.4
Stadt, H.A.5
Kumiski, D.6
Abu-Issa, R.7
Kirby, M.L.8
-
20
-
-
33947165217
-
Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells.
-
Sun YF, Liang XQ, Najafi N, Cass M, Lin LZ, Cai CL, Chen J, Evans SM. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 2007, 304:286-296.
-
(2007)
Dev Biol
, vol.304
, pp. 286-296
-
-
Sun, Y.F.1
Liang, X.Q.2
Najafi, N.3
Cass, M.4
Lin, L.Z.5
Cai, C.L.6
Chen, J.7
Evans, S.M.8
-
21
-
-
42049107565
-
Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed.
-
Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development 2008, 135:1157-1167.
-
(2008)
Development
, vol.135
, pp. 1157-1167
-
-
Galli, D.1
Dominguez, J.N.2
Zaffran, S.3
Munk, A.4
Brown, N.A.5
Buckingham, M.E.6
-
22
-
-
49949115945
-
Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart.
-
Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, Klingensmith J. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 2008, 135:1887-1895.
-
(2008)
Development
, vol.135
, pp. 1887-1895
-
-
Goddeeris, M.M.1
Rho, S.2
Petiet, A.3
Davenport, C.L.4
Johnson, G.A.5
Meyers, E.N.6
Klingensmith, J.7
-
23
-
-
68549111357
-
Sonic hedgehog is required in pulmonary endoderm for atrial septation.
-
Hoffmann AD, Peterson MA, Friedland-Little JM, Anderson SA, Moskowitz IP. Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 2009, 136:1761-1770.
-
(2009)
Development
, vol.136
, pp. 1761-1770
-
-
Hoffmann, A.D.1
Peterson, M.A.2
Friedland-Little, J.M.3
Anderson, S.A.4
Moskowitz, I.P.5
-
24
-
-
33746563019
-
Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18.
-
Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 2006, 98:1555-1563.
-
(2006)
Circ Res
, vol.98
, pp. 1555-1563
-
-
Christoffels, V.M.1
Mommersteeg, M.T.2
Trowe, M.O.3
Prall, O.W.4
de Gier-de Vries, C.5
Soufan, A.T.6
Bussen, M.7
Schuster-Gossler, K.8
Harvey, R.P.9
Moorman, A.F.10
-
25
-
-
37349083151
-
Pitx2c and nkx2-5 are required for the formation and identity of the pulmonary myocardium.
-
Mommersteeg MTM, Brown NA, Prall OWJ, Vries CDGD, Harvey RP, Moorman AFM, Christoffels VM. Pitx2c and nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 2007, 101:902-909.
-
(2007)
Circ Res
, vol.101
, pp. 902-909
-
-
Mommersteeg, M.T.M.1
Brown, N.A.2
Prall, O.W.J.3
Vries, C.D.G.D.4
Harvey, R.P.5
Moorman, A.F.M.6
Christoffels, V.M.7
-
26
-
-
79954998151
-
Hox genes define distinct progenitor sub-domains within the second heart field.
-
Bertrand N, Roux M, Ryckebusch L, Niederreither K, Dolle P, Moon A, Capecchi M, Zaffran S. Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 2011, 353:266-274.
-
(2011)
Dev Biol
, vol.353
, pp. 266-274
-
-
Bertrand, N.1
Roux, M.2
Ryckebusch, L.3
Niederreither, K.4
Dolle, P.5
Moon, A.6
Capecchi, M.7
Zaffran, S.8
-
27
-
-
13544272476
-
Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages.
-
Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005, 433:647-653.
-
(2005)
Nature
, vol.433
, pp. 647-653
-
-
Laugwitz, K.L.1
Moretti, A.2
Lam, J.3
Gruber, P.4
Chen, Y.5
Woodard, S.6
Lin, L.Z.7
Cai, C.L.8
Lu, M.M.9
Reth, M.10
-
29
-
-
70350719507
-
Tbx1 regulates proliferation and differentiation of multipotent heart progenitors.
-
Chen L, Fulcoli FG, Tang S, Baldini A. Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 2009, 105:842-851.
-
(2009)
Circ Res
, vol.105
, pp. 842-851
-
-
Chen, L.1
Fulcoli, F.G.2
Tang, S.3
Baldini, A.4
-
30
-
-
41149107746
-
Identification of downstream genetic pathways of Tbx1 in the second heart field.
-
Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 2008, 316:524-537.
-
(2008)
Dev Biol
, vol.316
, pp. 524-537
-
-
Liao, J.1
Aggarwal, V.S.2
Nowotschin, S.3
Bondarev, A.4
Lipner, S.5
Morrow, B.E.6
-
31
-
-
48849103985
-
The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning.
-
Theveniau-Ruissy M, Dandonneau M, Mesbah K, Ghez O, Mattei MG, Miquerol L, Kelly RG. The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 2008, 103:142-148.
-
(2008)
Circ Res
, vol.103
, pp. 142-148
-
-
Theveniau-Ruissy, M.1
Dandonneau, M.2
Mesbah, K.3
Ghez, O.4
Mattei, M.G.5
Miquerol, L.6
Kelly, R.G.7
-
32
-
-
77956584418
-
Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate.
-
Hutson MR, Zeng XL, Kim AJ, Antoon E, Harward S, Kirby ML. Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development 2010, 137:3001-3011.
-
(2010)
Development
, vol.137
, pp. 3001-3011
-
-
Hutson, M.R.1
Zeng, X.L.2
Kim, A.J.3
Antoon, E.4
Harward, S.5
Kirby, M.L.6
-
33
-
-
77956571716
-
BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors.
-
Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 2010, 137:2989-3000.
-
(2010)
Development
, vol.137
, pp. 2989-3000
-
-
Tirosh-Finkel, L.1
Zeisel, A.2
Brodt-Ivenshitz, M.3
Shamai, A.4
Yao, Z.5
Seger, R.6
Domany, E.7
Tzahor, E.8
-
34
-
-
33745246326
-
Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx.
-
Hutson MR, Zhang P, Stadt HA, Sato AK, Li YX, Burch J, Creazzo TL, Kirby ML. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 2006, 295:486-497.
-
(2006)
Dev Biol
, vol.295
, pp. 486-497
-
-
Hutson, M.R.1
Zhang, P.2
Stadt, H.A.3
Sato, A.K.4
Li, Y.X.5
Burch, J.6
Creazzo, T.L.7
Kirby, M.L.8
-
35
-
-
9444242167
-
The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis.
-
Kelly RG, Jerome-Majewska LA, Papaioannou VE. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet 2004, 13:2829-2840.
-
(2004)
Hum Mol Genet
, vol.13
, pp. 2829-2840
-
-
Kelly, R.G.1
Jerome-Majewska, L.A.2
Papaioannou, V.E.3
-
36
-
-
40949146016
-
The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development.
-
Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 2008, 135:647-657.
-
(2008)
Development
, vol.135
, pp. 647-657
-
-
Nathan, E.1
Monovich, A.2
Tirosh-Finkel, L.3
Harrelson, Z.4
Rousso, T.5
Rinon, A.6
Harel, I.7
Evans, S.M.8
Tzahor, E.9
-
37
-
-
77956585946
-
Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo.
-
Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 2010, 137:3269-3279.
-
(2010)
Development
, vol.137
, pp. 3269-3279
-
-
Lescroart, F.1
Kelly, R.G.2
Le Garrec, J.F.3
Nicolas, J.F.4
Meilhac, S.M.5
Buckingham, M.6
-
38
-
-
35748933898
-
The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development.
-
Brade T, Gessert S, Kuhl M, Pandur P. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. Dev Biol 2007, 311:297-310.
-
(2007)
Dev Biol
, vol.311
, pp. 297-310
-
-
Brade, T.1
Gessert, S.2
Kuhl, M.3
Pandur, P.4
-
39
-
-
79959850611
-
Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish.
-
Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 2011, 474:645-648.
-
(2011)
Nature
, vol.474
, pp. 645-648
-
-
Zhou, Y.1
Cashman, T.J.2
Nevis, K.R.3
Obregon, P.4
Carney, S.A.5
Liu, Y.6
Gu, A.7
Mosimann, C.8
Sondalle, S.9
Peterson, R.E.10
-
40
-
-
77955098284
-
Early chordate origins of the vertebrate second heart field.
-
Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L. Early chordate origins of the vertebrate second heart field. Science 2010, 329:565-568.
-
(2010)
Science
, vol.329
, pp. 565-568
-
-
Stolfi, A.1
Gainous, T.B.2
Young, J.J.3
Mori, A.4
Levine, M.5
Christiaen, L.6
-
41
-
-
0034662018
-
Chamber formation and morphogenesis in the developing mammalian heart.
-
Christoffels VM, Habets PEMH, Franco D, Campione M, de Jong F, Lamers WH, Bao ZZ, Palmer S, Biben C, Harvey RP, et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 2000, 223:266-278.
-
(2000)
Dev Biol
, vol.223
, pp. 266-278
-
-
Christoffels, V.M.1
Habets, P.E.M.H.2
Franco, D.3
Campione, M.4
de Jong, F.5
Lamers, W.H.6
Bao, Z.Z.7
Palmer, S.8
Biben, C.9
Harvey, R.P.10
-
42
-
-
33947522170
-
T-box factors determine cardiac design.
-
Hoogaars WMH, Barnett P, Moorman AFM, Christoffels VM. T-box factors determine cardiac design. Cell Mol Life Sci 2007, 64:646-660.
-
(2007)
Cell Mol Life Sci
, vol.64
, pp. 646-660
-
-
Hoogaars, W.M.H.1
Barnett, P.2
Moorman, A.F.M.3
Christoffels, V.M.4
-
43
-
-
0037093383
-
Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation.
-
Habets PEMH, Moorman AFM, Clout DEW, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 2002, 16:1234-1246.
-
(2002)
Genes Dev
, vol.16
, pp. 1234-1246
-
-
Habets, P.E.M.H.1
Moorman, A.F.M.2
Clout, D.E.W.3
van Roon, M.A.4
Lingbeek, M.5
van Lohuizen, M.6
Campione, M.7
Christoffels, V.M.8
-
44
-
-
70149115439
-
Tbx20 interacts with smads to confine Tbx2 expression to the atrioventricular canal.
-
Singh R, Horsthuis T, Farin HF, Grieskamp T, Norden J, Petry M, Wakker V, Moorman AFM, Christoffels VM, Kispert A. Tbx20 interacts with smads to confine Tbx2 expression to the atrioventricular canal. Circ Res 2009, 105:442-452.
-
(2009)
Circ Res
, vol.105
, pp. 442-452
-
-
Singh, R.1
Horsthuis, T.2
Farin, H.F.3
Grieskamp, T.4
Norden, J.5
Petry, M.6
Wakker, V.7
Moorman, A.F.M.8
Christoffels, V.M.9
Kispert, A.10
-
45
-
-
67649870457
-
The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle.
-
Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 2009, 104:1267-1274.
-
(2009)
Circ Res
, vol.104
, pp. 1267-1274
-
-
Aanhaanen, W.T.1
Brons, J.F.2
Dominguez, J.N.3
Rana, M.S.4
Norden, J.5
Airik, R.6
Wakker, V.7
de Gier-de Vries, C.8
Brown, N.A.9
Kispert, A.10
-
46
-
-
34247168130
-
Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract.
-
Rana MS, Horsten NC, Tesink-Taekema S, Lamers WH, Moorman AF, van den Hoff MJ. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 2007, 100:1000-1007.
-
(2007)
Circ Res
, vol.100
, pp. 1000-1007
-
-
Rana, M.S.1
Horsten, N.C.2
Tesink-Taekema, S.3
Lamers, W.H.4
Moorman, A.F.5
van den Hoff, M.J.6
-
47
-
-
70149088960
-
Heart valve development regulatory networks in development and disease.
-
Combs MD, Yutzey KE. Heart valve development regulatory networks in development and disease. Circ Res 2009, 105:408-421.
-
(2009)
Circ Res
, vol.105
, pp. 408-421
-
-
Combs, M.D.1
Yutzey, K.E.2
-
48
-
-
69949094996
-
Reptilian heart development and the molecular basis of cardiac chamber evolution.
-
Koshiba-Takeuchi K, Mori AD, Kaynak BL, Cebra-Thomas J, Sukonnik T, Georges RO, Latham S, Beck L, Henkelman RM, Black BL, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 2009, 461:95-98.
-
(2009)
Nature
, vol.461
, pp. 95-98
-
-
Koshiba-Takeuchi, K.1
Mori, A.D.2
Kaynak, B.L.3
Cebra-Thomas, J.4
Sukonnik, T.5
Georges, R.O.6
Latham, S.7
Beck, L.8
Henkelman, R.M.9
Black, B.L.10
-
49
-
-
0041326750
-
Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks.
-
Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 2003, 89:1110-1118.
-
(2003)
Heart
, vol.89
, pp. 1110-1118
-
-
Anderson, R.H.1
Webb, S.2
Brown, N.A.3
Lamers, W.4
Moorman, A.5
-
50
-
-
0037775854
-
Neural crest and cardiovascular development: a 20-year perspective.
-
Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 2003, 69:2-13.
-
(2003)
Birth Defects Res C Embryo Today
, vol.69
, pp. 2-13
-
-
Hutson, M.R.1
Kirby, M.L.2
-
51
-
-
53349171807
-
Lessons learnt with regard to aortopulmonary window.
-
Anderson RH, Brown N, Webb S, Henderson D. Lessons learnt with regard to aortopulmonary window. Cardiol Young 2008, 18:451-457.
-
(2008)
Cardiol Young
, vol.18
, pp. 451-457
-
-
Anderson, R.H.1
Brown, N.2
Webb, S.3
Henderson, D.4
-
52
-
-
0033566582
-
Myocardialization of the cardiac outflow tract.
-
van den Hoff MJB, Moorman AFM, Ruijter JM, Lamers WH, Bennington RW, Markwald RR, Wessels A. Myocardialization of the cardiac outflow tract. Dev Biol 1999, 212:477-490.
-
(1999)
Dev Biol
, vol.212
, pp. 477-490
-
-
van den Hoff, M.J.B.1
Moorman, A.F.M.2
Ruijter, J.M.3
Lamers, W.H.4
Bennington, R.W.5
Markwald, R.R.6
Wessels, A.7
-
53
-
-
14044263538
-
Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract.
-
Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ. Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 2005, 96:292-299.
-
(2005)
Circ Res
, vol.96
, pp. 292-299
-
-
Phillips, H.M.1
Murdoch, J.N.2
Chaudhry, B.3
Copp, A.J.4
Henderson, D.J.5
-
54
-
-
0022994539
-
Rotation of the junction of the outflow tract and great-arteries in the embryonic human-heart.
-
Lomonico MP, Moore GW, Hutchins GM. Rotation of the junction of the outflow tract and great-arteries in the embryonic human-heart. Anat Rec 1986, 216:544-549.
-
(1986)
Anat Rec
, vol.216
, pp. 544-549
-
-
Lomonico, M.P.1
Moore, G.W.2
Hutchins, G.M.3
-
55
-
-
33646810876
-
Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries.
-
Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown NA, Buckingham ME. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 2006, 98:421-428.
-
(2006)
Circ Res
, vol.98
, pp. 421-428
-
-
Bajolle, F.1
Zaffran, S.2
Kelly, R.G.3
Hadchouel, J.4
Bonnet, D.5
Brown, N.A.6
Buckingham, M.E.7
-
56
-
-
0029938398
-
The structure of the mouse heart in late fetal stages.
-
Webb S, Brown NA, Anderson RH. The structure of the mouse heart in late fetal stages. Anat Embryol 1996, 194:37-47.
-
(1996)
Anat Embryol
, vol.194
, pp. 37-47
-
-
Webb, S.1
Brown, N.A.2
Anderson, R.H.3
-
57
-
-
79955555992
-
Cardiac neural crest is dispensable for outflow tract septation in Xenopus.
-
Lee YH, Saint-Jeannet JP. Cardiac neural crest is dispensable for outflow tract septation in Xenopus. Development 2011, 138:2025-2034.
-
(2011)
Development
, vol.138
, pp. 2025-2034
-
-
Lee, Y.H.1
Saint-Jeannet, J.P.2
-
58
-
-
4644317085
-
Lineage and morphogenetic analysis of the cardiac valves.
-
de Lange FJ, Moorman AFM, Anderson RH, Manner J, Soufan AT, de Vries CD, Schneider MD, Webb S, van den Hoff MJB, Christoffels VM. Lineage and morphogenetic analysis of the cardiac valves. Circ Res 2004, 95:645-654.
-
(2004)
Circ Res
, vol.95
, pp. 645-654
-
-
de Lange, F.J.1
Moorman, A.F.M.2
Anderson, R.H.3
Manner, J.4
Soufan, A.T.5
de Vries, C.D.6
Schneider, M.D.7
Webb, S.8
van den Hoff, M.J.B.9
Christoffels, V.M.10
-
59
-
-
0023801227
-
Development of cardiac beat rate in early chick-embryos is regulated by regional cues.
-
Satin J, Fujii S, Dehaan RL. Development of cardiac beat rate in early chick-embryos is regulated by regional cues. Dev Biol 1988, 129:103-113.
-
(1988)
Dev Biol
, vol.129
, pp. 103-113
-
-
Satin, J.1
Fujii, S.2
Dehaan, R.L.3
-
60
-
-
33847020703
-
Molecular pathway for the localized formation of the sinoatrial node.
-
Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res 2007, 100:354-362.
-
(2007)
Circ Res
, vol.100
, pp. 354-362
-
-
Mommersteeg, M.T.1
Hoogaars, W.M.2
Prall, O.W.3
de Gier-de Vries, C.4
Wiese, C.5
Clout, D.E.6
Papaioannou, V.E.7
Brown, N.A.8
Harvey, R.P.9
Moorman, A.F.10
-
61
-
-
34247590280
-
Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria.
-
Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LYE, Bakker ML, Clout DE, Wakker V, Barnett P, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 2007, 21:1098-1112.
-
(2007)
Genes Dev
, vol.21
, pp. 1098-1112
-
-
Hoogaars, W.M.H.1
Engel, A.2
Brons, J.F.3
Verkerk, A.O.4
de Lange, F.J.5
Wong, L.Y.E.6
Bakker, M.L.7
Clout, D.E.8
Wakker, V.9
Barnett, P.10
-
62
-
-
60549112988
-
Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5.
-
Espinoza-Lewis RA, Yu L, He FL, Liu HB, Tang RH, Shi JL, Sun XX, Martin JF, Wang DZ, Yang J, et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 2009, 327:376-385.
-
(2009)
Dev Biol
, vol.327
, pp. 376-385
-
-
Espinoza-Lewis, R.A.1
Yu, L.2
He, F.L.3
Liu, H.B.4
Tang, R.H.5
Shi, J.L.6
Sun, X.X.7
Martin, J.F.8
Wang, D.Z.9
Yang, J.10
-
63
-
-
77957265714
-
Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart.
-
Aanhaanen WTJ, Mommersteeg MTM, Norden J, Wakker V, de Gier-de Vries C, Anderson RH, Kispert A, Moorman AFM, Christoffels VM. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res 2010, 107:728-736.
-
(2010)
Circ Res
, vol.107
, pp. 728-736
-
-
Aanhaanen, W.T.J.1
Mommersteeg, M.T.M.2
Norden, J.3
Wakker, V.4
de Gier-de Vries, C.5
Anderson, R.H.6
Kispert, A.7
Moorman, A.F.M.8
Christoffels, V.M.9
-
64
-
-
79960011518
-
Establishment of the mouse ventricular conduction system.
-
Miquerol L, Beyer S, Kelly RG. Establishment of the mouse ventricular conduction system. Cardiovasc Res 2011, 91:232-242.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 232-242
-
-
Miquerol, L.1
Beyer, S.2
Kelly, R.G.3
-
65
-
-
0033039216
-
Conducting the embryonic heart: orchestrating development of specialized cardiac tissues.
-
Gourdie RG, Kubalak S, Mikawa T. Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med 1999, 9:18-26.
-
(1999)
Trends Cardiovasc Med
, vol.9
, pp. 18-26
-
-
Gourdie, R.G.1
Kubalak, S.2
Mikawa, T.3
-
66
-
-
77954760557
-
Biphasic development of the mammalian ventricular conduction system.
-
Miquerol L, Moreno-Rascon N, Beyer S, Dupays L, Meilhac SM, Buckingham ME, Franco D, Kelly RG. Biphasic development of the mammalian ventricular conduction system. Circ Res 2010, 107:153-161.
-
(2010)
Circ Res
, vol.107
, pp. 153-161
-
-
Miquerol, L.1
Moreno-Rascon, N.2
Beyer, S.3
Dupays, L.4
Meilhac, S.M.5
Buckingham, M.E.6
Franco, D.7
Kelly, R.G.8
-
67
-
-
33847713360
-
Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles.
-
Gurjarpadhye A, Hewett KW, Justus C, Wen XJ, Stadt H, Kirby ML, Sedmera D, Gourdie RG. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 2007, 292:H1291-H1300.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.292
-
-
Gurjarpadhye, A.1
Hewett, K.W.2
Justus, C.3
Wen, X.J.4
Stadt, H.5
Kirby, M.L.6
Sedmera, D.7
Gourdie, R.G.8
-
68
-
-
44949102430
-
Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system.
-
Bakker ML, Boukens BJ, Mommersteeg MTM, Brons JF, Wakker V, Moorman AFM, Christoffels VM. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 2008, 102:1340-1349.
-
(2008)
Circ Res
, vol.102
, pp. 1340-1349
-
-
Bakker, M.L.1
Boukens, B.J.2
Mommersteeg, M.T.M.3
Brons, J.F.4
Wakker, V.5
Moorman, A.F.M.6
Christoffels, V.M.7
-
69
-
-
17944378083
-
A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease.
-
Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001, 106:709-721.
-
(2001)
Cell
, vol.106
, pp. 709-721
-
-
Bruneau, B.G.1
Nemer, G.2
Schmitt, J.P.3
Charron, F.4
Robitaille, L.5
Caron, S.6
Conner, D.A.7
Gessler, M.8
Nemer, M.9
Seidman, C.E.10
-
70
-
-
33847656148
-
Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system.
-
Meysen S, Marger L, Hewett KW, Jarry-Guichard T, Agarkova I, Chauvin JP, Perriard JC, Izumo S, Gourdie RG, Mangoni ME, et al. Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol 2007, 303:740-753.
-
(2007)
Dev Biol
, vol.303
, pp. 740-753
-
-
Meysen, S.1
Marger, L.2
Hewett, K.W.3
Jarry-Guichard, T.4
Agarkova, I.5
Chauvin, J.P.6
Perriard, J.C.7
Izumo, S.8
Gourdie, R.G.9
Mangoni, M.E.10
-
71
-
-
34250754981
-
A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development.
-
Moskowitz IPG, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 2007, 129:1365-1376.
-
(2007)
Cell
, vol.129
, pp. 1365-1376
-
-
Moskowitz, I.P.G.1
Kim, J.B.2
Moore, M.L.3
Wolf, C.M.4
Peterson, M.A.5
Shendure, J.6
Nobrega, M.A.7
Yokota, Y.8
Berul, C.9
Izumo, S.10
-
72
-
-
80052011279
-
Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network.
-
Zhang SS, Kim KH, Rosen A, Smyth JW, Sakuma R, Delgado-Olguin P, Davis M, Chi NC, Puviindran V, Gaborit N, et al. Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci U S A 2011, 108:13576-13581.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 13576-13581
-
-
Zhang, S.S.1
Kim, K.H.2
Rosen, A.3
Smyth, J.W.4
Sakuma, R.5
Delgado-Olguin, P.6
Davis, M.7
Chi, N.C.8
Puviindran, V.9
Gaborit, N.10
-
73
-
-
0037207468
-
Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity.
-
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003, 83:59-115.
-
(2003)
Physiol Rev
, vol.83
, pp. 59-115
-
-
Brutsaert, D.L.1
-
74
-
-
33847203944
-
Notch signaling is essential for ventricular chamber development
-
Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen H, et al. Notch signaling is essential for ventricular chamber development. Dev Cell 2007, 12:415-429.
-
(2007)
Dev Cell
, vol.12
, pp. 415-429
-
-
Grego-Bessa, J.1
Luna-Zurita, L.2
del, M.G.3
Bolós, V.4
Melgar, P.5
Arandilla, A.6
Garratt, A.N.7
Zang, H.8
Mukouyama, Y.S.9
Chen, H.10
-
75
-
-
79551521516
-
Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways.
-
Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfie L, Lu MM, Morley GE, Patel VV, Epstein JA. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 2011, 121:525-533.
-
(2011)
J Clin Invest
, vol.121
, pp. 525-533
-
-
Rentschler, S.1
Harris, B.S.2
Kuznekoff, L.3
Jain, R.4
Manderfie, L.5
Lu, M.M.6
Morley, G.E.7
Patel, V.V.8
Epstein, J.A.9
-
76
-
-
0027058975
-
Clonal analysis of cardiac morphogenesis in the chicken-embryo using a replication-defective retrovirus 3. Polyclonal origin of adjacent ventricular myocytes.
-
Mikawa T, Cohengould L, Fischman DA. Clonal analysis of cardiac morphogenesis in the chicken-embryo using a replication-defective retrovirus 3. Polyclonal origin of adjacent ventricular myocytes. Dev Dyn 1992, 195:133-141.
-
(1992)
Dev Dyn
, vol.195
, pp. 133-141
-
-
Mikawa, T.1
Cohengould, L.2
Fischman, D.A.3
-
77
-
-
0041508378
-
A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart.
-
Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME. A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 2003, 130:3877-3889.
-
(2003)
Development
, vol.130
, pp. 3877-3889
-
-
Meilhac, S.M.1
Kelly, R.G.2
Rocancourt, D.3
Eloy-Trinquet, S.4
Nicolas, J.F.5
Buckingham, M.E.6
-
78
-
-
79960009222
-
Function and form in the developing cardiovascular system.
-
Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res 2011, 91:252-259.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 252-259
-
-
Sedmera, D.1
-
79
-
-
26844506839
-
The homeodomain transcription factor lrx5 establishes the mouse cardiac ventricular repolarization gradient.
-
Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu YH, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, et al. The homeodomain transcription factor lrx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 2005, 123:347-358.
-
(2005)
Cell
, vol.123
, pp. 347-358
-
-
Costantini, D.L.1
Arruda, E.P.2
Agarwal, P.3
Kim, K.H.4
Zhu, Y.H.5
Zhu, W.6
Lebel, M.7
Cheng, C.W.8
Park, C.Y.9
Pierce, S.A.10
-
80
-
-
0034956857
-
The origin, formation and developmental significance of the epicardium: a review.
-
Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 2001, 169:89-103.
-
(2001)
Cells Tissues Organs
, vol.169
, pp. 89-103
-
-
Manner, J.1
Perez-Pomares, J.M.2
Macias, D.3
Munoz-Chapuli, R.4
-
81
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endoethelial cells.
-
Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ. Distinct compartments of the proepicardial organ give rise to coronary vascular endoethelial cells. Dev Cell 2012, 22:639-650.
-
(2012)
Dev Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
Singh, M.K.2
Degenhardt, K.3
Rivera-Feliciano, J.4
Johnson, R.L.5
Epstein, J.A.6
Tabin, C.J.7
-
82
-
-
37349110071
-
Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center.
-
Lavine KJ, Ornitz DM. Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 2008, 24:33-40.
-
(2008)
Trends Genet
, vol.24
, pp. 33-40
-
-
Lavine, K.J.1
Ornitz, D.M.2
-
83
-
-
67349160766
-
Epicardial control of myocardial proliferation and morphogenesis.
-
Sucov HM, Gu Y, Thomas S, Li P, Pashmforoush M. Epicardial control of myocardial proliferation and morphogenesis. Pediatr Cardiol 2009, 30:617-625.
-
(2009)
Pediatr Cardiol
, vol.30
, pp. 617-625
-
-
Sucov, H.M.1
Gu, Y.2
Thomas, S.3
Li, P.4
Pashmforoush, M.5
-
84
-
-
79955707553
-
Myocyte proliferation in the developing heart.
-
Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev Dyn 2011, 240:1322-1334.
-
(2011)
Dev Dyn
, vol.240
, pp. 1322-1334
-
-
Sedmera, D.1
Thompson, R.P.2
-
85
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart.
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
Sadek, H.A.7
-
86
-
-
77954919005
-
Epicardial spindle orientation controls cell entry into the myocardium.
-
Wu MF, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 2010, 19:114-125.
-
(2010)
Dev Cell
, vol.19
, pp. 114-125
-
-
Wu, M.F.1
Smith, C.L.2
Hall, J.A.3
Lee, I.4
Luby-Phelps, K.5
Tallquist, M.D.6
-
87
-
-
84886270643
-
Cardiac fibroblasts regulate myocardial proliferation and ventricular formation through beta 1 integrin signaling.
-
Ieda M, Tsuchihashi T, Ivey K, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation and ventricular formation through beta 1 integrin signaling. Circulation 2008, 118:S304-S305.
-
(2008)
Circulation
, vol.118
-
-
Ieda, M.1
Tsuchihashi, T.2
Ivey, K.3
Srivastava, D.4
-
88
-
-
12244298152
-
Origin of coronary endothelial cells from epicardial mesothelium in avian embryos.
-
Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 2002, 46:1005-1013.
-
(2002)
Int J Dev Biol
, vol.46
, pp. 1005-1013
-
-
Perez-Pomares, J.M.1
Carmona, R.2
Gonzalez-Iriarte, M.3
Atencia, G.4
Wessels, A.5
Munoz-Chapuli, R.6
-
89
-
-
79954793035
-
Notch signaling regulates smooth muscle differentiation of epicardium-derived cells.
-
Grieskamp T, Rudat C, Ludtke THW, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res 2011, 108:813-823.
-
(2011)
Circ Res
, vol.108
, pp. 813-823
-
-
Grieskamp, T.1
Rudat, C.2
Ludtke, T.H.W.3
Norden, J.4
Kispert, A.5
-
90
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells.
-
Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454:104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
Martin, J.C.2
Sun, Y.3
Cui, L.4
Wang, L.5
Ouyang, K.6
Yang, L.7
Bu, L.8
Liang, X.9
Zhang, X.10
-
91
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart.
-
Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454:109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
Wu, S.M.4
Domian, I.5
Rivera-Feliciano, J.6
Jiang, D.7
von Gise, A.8
Ikeda, S.9
Chien, K.R.10
-
92
-
-
65249137151
-
Tbx18 and the fate of epicardial progenitors.
-
Christoffels VM, Grieskamp T, Norden J, Mommersteeg MTM, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature 2009, 458:E8-E9.
-
(2009)
Nature
, vol.458
-
-
Christoffels, V.M.1
Grieskamp, T.2
Norden, J.3
Mommersteeg, M.T.M.4
Rudat, C.5
Kispert, A.6
-
93
-
-
84155186471
-
No muscle for a damaged heart: thymosin beta 4 treatment after myocardial infarction does not induce myocardial differentiation of epicardial cells.
-
Kispert A. No muscle for a damaged heart: thymosin beta 4 treatment after myocardial infarction does not induce myocardial differentiation of epicardial cells. J Mol Cell Cardiol 2012, 52:10-12.
-
(2012)
J Mol Cell Cardiol
, vol.52
, pp. 10-12
-
-
Kispert, A.1
-
94
-
-
79959944642
-
Vascularizing the heart.
-
Riley PR, Smart N. Vascularizing the heart. Cardiovasc Res 2011, 91:260-268.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 260-268
-
-
Riley, P.R.1
Smart, N.2
-
95
-
-
82755170946
-
Adult cardiac-resident MSC-like stem cells with a proepicardial origin.
-
Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 2011, 9:527-540.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 527-540
-
-
Chong, J.J.1
Chandrakanthan, V.2
Xaymardan, M.3
Asli, N.S.4
Li, J.5
Ahmed, I.6
Heffernan, C.7
Menon, M.K.8
Scarlett, C.J.9
Rashidianfar, A.10
-
96
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells.
-
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464:549-553.
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
Ueno, H.2
Weissman, I.L.3
Krasnow, M.A.4
-
97
-
-
84886270644
-
-
Heart Development. Current Topics in Developmental Biology., ed., 100. Available at:
-
Heart Development. Current Topics in Developmental Biology. Bruneau BG, ed. 2012, 100. Available at: http://www.sciencedirect.com/science/bookseries/00702153.
-
(2012)
-
-
Bruneau, B.G.1
-
98
-
-
33748069533
-
-
New York, NY: Oxford University Press; ISBN: 0-19-517819-X
-
Kirby ML. Cardiac Development. New York, NY: Oxford University Press; 2007. ISBN: 0-19-517819-X
-
(2007)
Cardiac Development.
-
-
Kirby, M.L.1
-
101
-
-
66249110793
-
-
eds. 4th ed. Philadelphia, Pennsylvania: Churchill Livingstone, Elsevier; ISBN: 978-0-443-06811-9
-
Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH, eds. Larsen's Human Embryology. 4th ed. Philadelphia, Pennsylvania: Churchill Livingstone, Elsevier; 2009. ISBN: 978-0-443-06811-9
-
(2009)
Larsen's Human Embryology.
-
-
Schoenwolf, G.C.1
Bleyl, S.B.2
Brauer, P.R.3
Francis-West, P.H.4
-
102
-
-
84886267841
-
-
Spotlight issue on Cardiac Development of Cardiovascular Research. In, eds., Available at:
-
Spotlight issue on Cardiac Development of Cardiovascular Research. In: Franco D, Kelly RG, eds. 2011, 91. Available at: http://cardiovascres.oxfordjournals.org/content/91/2.toc.
-
(2011)
, vol.91
-
-
Franco, D.1
Kelly, R.G.2
|