-
1
-
-
84929502727
-
How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy
-
25759175
-
Feng Y, Yao Z, Klionsky DJ. How to control self-digestion:transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 2015; 25:354-63; PMID:25759175; http://dx.doi.org/10.1016/j.tcb.2015.02.002
-
(2015)
Trends Cell Biol
, vol.25
, pp. 354-363
-
-
Feng, Y.1
Yao, Z.2
Klionsky, D.J.3
-
2
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
8008069
-
Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756-8; PMID:8008069; http://dx.doi.org/10.1038/369756a0
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
Albers, M.W.2
Shin, T.B.3
Ichikawa, K.4
Keith, C.T.5
Lane, W.S.6
Schreiber, S.L.7
-
3
-
-
0028239893
-
RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
-
7518356
-
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1:a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78:35-43; PMID:7518356; http://dx.doi.org/10.1016/0092-8674(94)90570-3
-
(1994)
Cell
, vol.78
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
4
-
-
0028950217
-
Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells
-
7822316
-
Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270:815-22; PMID:7822316; http://dx.doi.org/10.1074/jbc.270.2.815
-
(1995)
J Biol Chem
, vol.270
, pp. 815-822
-
-
Sabers, C.J.1
Martin, M.M.2
Brunn, G.J.3
Williams, J.M.4
Dumont, F.J.5
Wiederrecht, G.6
Abraham, R.T.7
-
5
-
-
84859778293
-
mTOR signaling in growth control and disease
-
22500797
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274-93; PMID:22500797; http://dx.doi.org/10.1016/j.cell.2012.03.017
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
6
-
-
82555166000
-
mTOR signaling in disease
-
21963299
-
Dazert E, Hall MN. mTOR signaling in disease. Curr Opin Cell Biol 2011; 23:744-55; PMID:21963299; http://dx.doi.org/10.1016/j.ceb.2011.09.003
-
(2011)
Curr Opin Cell Biol
, vol.23
, pp. 744-755
-
-
Dazert, E.1
Hall, M.N.2
-
7
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
19225151
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003; PMID:19225151; http://dx.doi.org/10.1091/mbc.E08-12-1249
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
8
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
19258318
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305; PMID:19258318; http://dx.doi.org/10.1074/jbc.M900573200
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
9
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
19211835
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-91; PMID:19211835; http://dx.doi.org/10.1091/mbc.E08-12-1248
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
10
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
23728461
-
Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013; 15:555-64; PMID:23728461; http://dx.doi.org/10.1038/ncb2763
-
(2013)
Nat Cell Biol
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
11
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
21752829
-
Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011; 20:3852-66; PMID:21752829; http://dx.doi.org/10.1093/hmg/ddr306
-
(2011)
Hum Mol Genet
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
Impey, S.2
Kang, H.3
di Ronza, A.4
Pelz, C.5
Sardiello, M.6
Ballabio, A.7
-
12
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
21617040
-
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429-33; PMID:21617040; http://dx.doi.org/10.1126/science.1204592
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
13
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
22343943
-
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31:1095-108; PMID:22343943; http://dx.doi.org/10.1038/emboj.2012.32
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
-
14
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
22576015
-
Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012; 8:903-14; PMID:22576015; http://dx.doi.org/10.4161/auto.19653
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
15
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
22692423
-
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5:ra42; PMID:22692423; http://dx.doi.org/10.1126/scisignal.2002790
-
(2012)
Sci Signal
, vol.5
, pp. 42
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
Walther, T.C.7
Ferguson, S.M.8
-
16
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
22053050
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334:678-83; PMID:22053050; http://dx.doi.org/10.1126/science.1207056
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
17
-
-
84922727084
-
Metabolism
-
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347:194-8.
-
(2015)
Differential regulation of mTORC1 by leucine and glutamine. Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
Plouffe, S.W.6
Tagliabracci, V.S.7
Guan, K.L.8
-
18
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
25561175
-
Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81; PMID:25561175; http://dx.doi.org/10.1038/nature14107
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
-
19
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347:188-94.
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
-
20
-
-
84903158167
-
Regulation of mTORC1 by amino acids
-
24698685
-
Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014; 24:400-6; PMID:24698685; http://dx.doi.org/10.1016/j.tcb.2014.03.003
-
(2014)
Trends Cell Biol
, vol.24
, pp. 400-406
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
21
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
12766776
-
Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5:566-71; PMID:12766776; http://dx.doi.org/10.1038/ncb996
-
(2003)
Nat Cell Biol
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
Gao, X.2
Chiarelli, D.A.3
Li, L.4
Pan, D.5
Edgar, B.A.6
-
22
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
12766775
-
Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5:559-65; PMID:12766775; http://dx.doi.org/10.1038/ncb995
-
(2003)
Nat Cell Biol
, vol.5
, pp. 559-565
-
-
Stocker, H.1
Radimerski, T.2
Schindelholz, B.3
Wittwer, F.4
Belawat, P.5
Daram, P.6
Breuer, S.7
Thomas, G.8
Hafen, E.9
-
23
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
15854902
-
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15:702-13; PMID:15854902; http://dx.doi.org/10.1016/j.cub.2005.02.053
-
(2005)
Curr Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
24
-
-
77953255215
-
Regulation and isoform function of the V-ATPases
-
20450191
-
Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases. Biochemistry 2010; 49:4715-23; PMID:20450191; http://dx.doi.org/10.1021/bi100397s
-
(2010)
Biochemistry
, vol.49
, pp. 4715-4723
-
-
Toei, M.1
Saum, R.2
Forgac, M.3
-
25
-
-
84942088799
-
Recent Insights into the Structure, Regulation, and Function of the V-ATPases
-
26410601
-
Cotter K, Stransky L, McGuire C, Forgac M. Recent Insights into the Structure, Regulation, and Function of the V-ATPases. Trends Biochem Sci 2015; 40:611-22; PMID:26410601; http://dx.doi.org/10.1016/j.tibs.2015.08.005
-
(2015)
Trends Biochem Sci
, vol.40
, pp. 611-622
-
-
Cotter, K.1
Stransky, L.2
McGuire, C.3
Forgac, M.4
-
26
-
-
77954762963
-
The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes
-
20570919
-
Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Kurauchi-Mito A, Bokuda K, Narita T, Oshima Y, Sakoda M, et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ Res 2010; 107:30-4;PMID:20570919;http://dx.doi.org/10.1161/CIRCRESAHA.110.224667
-
(2010)
Circ Res
, vol.107
, pp. 30-34
-
-
Kinouchi, K.1
Ichihara, A.2
Sano, M.3
Sun-Wada, G.H.4
Wada, Y.5
Kurauchi-Mito, A.6
Bokuda, K.7
Narita, T.8
Oshima, Y.9
Sakoda, M.10
-
27
-
-
82655181486
-
Prorenin receptor is essential for normal podocyte structure and function
-
22052048
-
Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, Narita T, Kurosawa H, Sun-Wada GH, Wada Y, et al. Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 2011; 22:2203-12; PMID:22052048; http://dx.doi.org/10.1681/ASN.2011020202
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 2203-2212
-
-
Oshima, Y.1
Kinouchi, K.2
Ichihara, A.3
Sakoda, M.4
Kurauchi-Mito, A.5
Bokuda, K.6
Narita, T.7
Kurosawa, H.8
Sun-Wada, G.H.9
Wada, Y.10
-
28
-
-
82655181484
-
Prorenin receptor is essential for podocyte autophagy and survival
-
22034640
-
Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, Sohn D, Sihn G, Rousselle A, Fokuhl V, et al. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 2011; 22:2193-202; PMID:22034640; http://dx.doi.org/10.1681/ASN.2011020200
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 2193-2202
-
-
Riediger, F.1
Quack, I.2
Qadri, F.3
Hartleben, B.4
Park, J.K.5
Potthoff, S.A.6
Sohn, D.7
Sihn, G.8
Rousselle, A.9
Fokuhl, V.10
-
29
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
20381137
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290-303; PMID:20381137; http://dx.doi.org/10.1016/j.cell.2010.02.024
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
30
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
21804531
-
Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J. Regulation of TFEB and V-ATPases by mTORC1. EMBO J 2011; 30:3242-58; PMID:21804531; http://dx.doi.org/10.1038/emboj.2011.257
-
(2011)
EMBO J
, vol.30
, pp. 3242-3258
-
-
Pena-Llopis, S.1
Vega-Rubin-de-Celis, S.2
Schwartz, J.C.3
Wolff, N.C.4
Tran, T.A.5
Zou, L.6
Xie, X.J.7
Corey, D.R.8
Brugarolas, J.9
-
31
-
-
84883017889
-
Functions of autophagy in normal and diseased liver
-
23774882
-
Czaja MJ, Ding WX, Donohue TM, Jr., Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, et al. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9:1131-58; PMID:23774882; http://dx.doi.org/10.4161/auto.25063
-
(2013)
Autophagy
, vol.9
, pp. 1131-1158
-
-
Czaja, M.J.1
Ding, W.X.2
Donohue, T.M.3
Friedman, S.L.4
Kim, J.S.5
Komatsu, M.6
Lemasters, J.J.7
Lemoine, A.8
Lin, J.D.9
Ou, J.H.10
-
32
-
-
84930226008
-
Vacuolar ATPase in phagosome-lysosome fusion
-
25903133
-
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, et al. Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem 2015; 290:14166-80; PMID:25903133; http://dx.doi.org/10.1074/jbc.M114.628891
-
(2015)
J Biol Chem
, vol.290
, pp. 14166-14180
-
-
Kissing, S.1
Hermsen, C.2
Repnik, U.3
Nesset, C.K.4
von Bargen, K.5
Griffiths, G.6
Ichihara, A.7
Lee, B.S.8
Schwake, M.9
De Brabander, J.10
-
33
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
17386266
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25:903-15; PMID:17386266; http://dx.doi.org/10.1016/j.molcel.2007.03.003
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
34
-
-
77957903550
-
Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer
-
20860370
-
Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, et al. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 2010; 53:7146-55; PMID:20860370; http://dx.doi.org/10.1021/jm101144f
-
(2010)
J Med Chem
, vol.53
, pp. 7146-7155
-
-
Liu, Q.1
Chang, J.W.2
Wang, J.3
Kang, S.A.4
Thoreen, C.C.5
Markhard, A.6
Hur, W.7
Zhang, J.8
Sim, T.9
Sabatini, D.M.10
-
35
-
-
80655134725
-
TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes
-
21785263
-
Settembre C, Ballabio A. TFEB regulates autophagy:an integrated coordination of cellular degradation and recycling processes. Autophagy 2011; 7:1379-81; PMID:21785263; http://dx.doi.org/10.4161/auto.7.11.17166
-
(2011)
Autophagy
, vol.7
, pp. 1379-1381
-
-
Settembre, C.1
Ballabio, A.2
-
36
-
-
33751085062
-
A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa
-
16912037
-
Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 2006; 281:31885-93; PMID:16912037; http://dx.doi.org/10.1074/jbc.M605532200
-
(2006)
J Biol Chem
, vol.281
, pp. 31885-31893
-
-
Bowman, B.J.1
McCall, M.E.2
Baertsch, R.3
Bowman, E.J.4
-
37
-
-
84887531850
-
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery
-
24165939
-
Poea-Guyon S, Ammar MR, Erard M, Amar M, Moreau AW, Fossier P, Gleize V, Vitale N, Morel N. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 2013; 203:283-98; PMID:24165939; http://dx.doi.org/10.1083/jcb.201303104
-
(2013)
J Cell Biol
, vol.203
, pp. 283-298
-
-
Poea-Guyon, S.1
Ammar, M.R.2
Erard, M.3
Amar, M.4
Moreau, A.W.5
Fossier, P.6
Gleize, V.7
Vitale, N.8
Morel, N.9
-
38
-
-
84887540669
-
The vesicular ATPase: a missing link between acidification and exocytosis
-
24165933
-
Wang D, Hiesinger PR. The vesicular ATPase:a missing link between acidification and exocytosis. J Cell Biol 2013; 203:171-3; PMID:24165933; http://dx.doi.org/10.1083/jcb.201309130
-
(2013)
J Cell Biol
, vol.203
, pp. 171-173
-
-
Wang, D.1
Hiesinger, P.R.2
-
39
-
-
2442522365
-
Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1
-
14998996
-
Xie XS, Padron D, Liao X, Wang J, Roth MG, De Brabander JK. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J Biol Chem 2004; 279:19755-63; PMID:14998996; http://dx.doi.org/10.1074/jbc.M313796200
-
(2004)
J Biol Chem
, vol.279
, pp. 19755-19763
-
-
Xie, X.S.1
Padron, D.2
Liao, X.3
Wang, J.4
Roth, M.G.5
De Brabander, J.K.6
-
40
-
-
84940467267
-
Regulation of mTORC1 by PI3K signaling
-
26159692
-
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25:545-55; PMID:26159692; http://dx.doi.org/10.1016/j.tcb.2015.06.002
-
(2015)
Trends Cell Biol
, vol.25
, pp. 545-555
-
-
Dibble, C.C.1
Cantley, L.C.2
-
41
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
12869586
-
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17:1829-34; PMID:12869586; http://dx.doi.org/10.1101/gad.1110003
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
42
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
12906785
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13:1259-68; PMID:12906785; http://dx.doi.org/10.1016/S0960-9822(03)00506-2
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
43
-
-
35448946098
-
Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology
-
17912264
-
Forgac M. Vacuolar ATPases:rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007; 8:917-29; PMID:17912264; http://dx.doi.org/10.1038/nrm2272
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 917-929
-
-
Forgac, M.1
-
44
-
-
0036481562
-
The vacuolar (H+)-ATPases–nature's most versatile proton pumps
-
11836511
-
Nishi T, Forgac M. The vacuolar (H+)-ATPases–nature's most versatile proton pumps. Nat Rev Mol Cell Biol 2002; 3:94-103; PMID:11836511; http://dx.doi.org/10.1038/nrm729
-
(2002)
Nat Rev Mol Cell Biol
, vol.3
, pp. 94-103
-
-
Nishi, T.1
Forgac, M.2
-
45
-
-
84901649743
-
A new life for an old pump: V-ATPase and neurotransmitter release
-
24733582
-
Vavassori S, Mayer A. A new life for an old pump:V-ATPase and neurotransmitter release. J Cell Biol 2014; 205:7-9; PMID:24733582; http://dx.doi.org/10.1083/jcb.201403040
-
(2014)
J Cell Biol
, vol.205
, pp. 7-9
-
-
Vavassori, S.1
Mayer, A.2
-
46
-
-
80054953356
-
The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles
-
21934648
-
Strasser B, Iwaszkiewicz J, Michielin O, Mayer A. The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 2011; 30:4126-41; PMID:21934648; http://dx.doi.org/10.1038/emboj.2011.335
-
(2011)
EMBO J
, vol.30
, pp. 4126-4141
-
-
Strasser, B.1
Iwaszkiewicz, J.2
Michielin, O.3
Mayer, A.4
-
47
-
-
0043174011
-
Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel
-
12876274
-
Bayer MJ, Reese C, Buhler S, Peters C, Mayer A. Vacuole membrane fusion:V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 2003; 162:211-22; PMID:12876274; http://dx.doi.org/10.1083/jcb.200212004
-
(2003)
J Cell Biol
, vol.162
, pp. 211-222
-
-
Bayer, M.J.1
Reese, C.2
Buhler, S.3
Peters, C.4
Mayer, A.5
-
48
-
-
0034678130
-
ARF1 regulates pH-dependent COP functions in the early endocytic pathway
-
10713138
-
Gu F, Gruenberg J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J Biol Chem 2000; 275:8154-60; PMID:10713138; http://dx.doi.org/10.1074/jbc.275.11.8154
-
(2000)
J Biol Chem
, vol.275
, pp. 8154-8160
-
-
Gu, F.1
Gruenberg, J.2
-
49
-
-
12544249243
-
The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments
-
15525650
-
Vitavska O, Merzendorfer H, Wieczorek H. The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. J Biol Chem 2005; 280:1070-6; PMID:15525650; http://dx.doi.org/10.1074/jbc.M406797200
-
(2005)
J Biol Chem
, vol.280
, pp. 1070-1076
-
-
Vitavska, O.1
Merzendorfer, H.2
Wieczorek, H.3
-
50
-
-
10744233422
-
Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B
-
14662773
-
Chen SH, Bubb MR, Yarmola EG, Zuo J, Jiang J, Lee BS, Lu M, Gluck SL, Hurst IR, Holliday LS. Vacuolar H+-ATPase binding to microfilaments:regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 2004; 279:7988-98; PMID:14662773; http://dx.doi.org/10.1074/jbc.M305351200
-
(2004)
J Biol Chem
, vol.279
, pp. 7988-7998
-
-
Chen, S.H.1
Bubb, M.R.2
Yarmola, E.G.3
Zuo, J.4
Jiang, J.5
Lee, B.S.6
Lu, M.7
Gluck, S.L.8
Hurst, I.R.9
Holliday, L.S.10
-
51
-
-
0034644703
-
The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site
-
10915794
-
Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, Gluck SL. The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 2000; 275:32331-7; PMID:10915794; http://dx.doi.org/10.1074/jbc.M004795200
-
(2000)
J Biol Chem
, vol.275
, pp. 32331-32337
-
-
Holliday, L.S.1
Lu, M.2
Lee, B.S.3
Nelson, R.D.4
Solivan, S.5
Zhang, L.6
Gluck, S.L.7
-
52
-
-
84856800302
-
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
-
22025673
-
Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012; 32:2-11; PMID:22025673; http://dx.doi.org/10.1128/MCB.06159-11
-
(2012)
Mol Cell Biol
, vol.32
, pp. 2-11
-
-
Alers, S.1
Loffler, A.S.2
Wesselborg, S.3
Stork, B.4
-
53
-
-
84922861378
-
TFEB and the CLEAR network
-
25665440
-
Settembre C, Medina DL. TFEB and the CLEAR network. Methods Cell Biol 2015; 126:45-62; PMID:25665440
-
(2015)
Methods Cell Biol
, vol.126
, pp. 45-62
-
-
Settembre, C.1
Medina, D.L.2
-
54
-
-
84923820926
-
Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
-
25720963
-
Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99; PMID:25720963; http://dx.doi.org/10.1038/ncb3114
-
(2015)
Nat Cell Biol
, vol.17
, pp. 288-299
-
-
Medina, D.L.1
Di Paola, S.2
Peluso, I.3
Armani, A.4
De Stefani, D.5
Venditti, R.6
Montefusco, S.7
Scotto-Rosato, A.8
Prezioso, C.9
Forrester, A.10
-
55
-
-
84893659264
-
Elevated protein kinase D3 (PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation
-
24337579
-
Huck B, Duss S, Hausser A, Olayioye MA. Elevated protein kinase D3 (PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation. J Biol Chem 2014; 289:3138-47; PMID:24337579; http://dx.doi.org/10.1074/jbc.M113.502633
-
(2014)
J Biol Chem
, vol.289
, pp. 3138-3147
-
-
Huck, B.1
Duss, S.2
Hausser, A.3
Olayioye, M.A.4
-
56
-
-
84901207610
-
Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets
-
24612393
-
Moore SF, Hunter RW, Hers I. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets. J Thromb Haemost 2014; 12:748-60; PMID:24612393; http://dx.doi.org/10.1111/jth.12552
-
(2014)
J Thromb Haemost
, vol.12
, pp. 748-760
-
-
Moore, S.F.1
Hunter, R.W.2
Hers, I.3
-
57
-
-
84987670102
-
Protein kinase C controls lysosome biogenesis independently of mTORC1
-
27617930
-
Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, Huang X, Wang X, Jian Y, Tang G, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 2016; 18:1065-77; PMID:27617930; http://dx.doi.org/10.1038/ncb3407
-
(2016)
Nat Cell Biol
, vol.18
, pp. 1065-1077
-
-
Li, Y.1
Xu, M.2
Ding, X.3
Yan, C.4
Song, Z.5
Chen, L.6
Huang, X.7
Wang, X.8
Jian, Y.9
Tang, G.10
-
58
-
-
0033604521
-
Ribosomal S6 kinase signaling and the control of translation
-
10579915
-
Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 1999; 253:100-9; PMID:10579915; http://dx.doi.org/10.1006/excr.1999.4683
-
(1999)
Exp Cell Res
, vol.253
, pp. 100-109
-
-
Dufner, A.1
Thomas, G.2
-
59
-
-
84952915479
-
Sestrin2 is a leucine sensor for the mTORC1 pathway
-
26449471
-
Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016; 351:43-8; PMID:26449471; http://dx.doi.org/10.1126/science.aab2674
-
(2016)
Science
, vol.351
, pp. 43-48
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
Sabatini, D.M.7
-
60
-
-
84958580792
-
Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity
-
Carroll B, Maetzel D, Maddocks OD, Otten G, Ratcliff M, Smith GR, Dunlop EA, Passos JF, Davies OR, Jaenisch R, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. Elife 2016; 5, e11058; http://dx.doi.org/10.7554/eLife.11058
-
(2016)
Elife
, vol.5
-
-
Carroll, B.1
Maetzel, D.2
Maddocks, O.D.3
Otten, G.4
Ratcliff, M.5
Smith, G.R.6
Dunlop, E.A.7
Passos, J.F.8
Davies, O.R.9
Jaenisch, R.10
-
61
-
-
84959880781
-
The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway
-
26972053
-
Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 2016; 165:153-64; PMID:26972053; http://dx.doi.org/10.1016/j.cell.2016.02.035
-
(2016)
Cell
, vol.165
, pp. 153-164
-
-
Chantranupong, L.1
Scaria, S.M.2
Saxton, R.A.3
Gygi, M.P.4
Shen, K.5
Wyant, G.A.6
Wang, T.7
Harper, J.W.8
Gygi, S.P.9
Sabatini, D.M.10
-
62
-
-
84873665112
-
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
-
23263183
-
Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD, Sabatini DM. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013; 493:679-83; PMID:23263183; http://dx.doi.org/10.1038/nature11745
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
Zoncu, R.2
Chang, S.3
Gumper, I.4
Snitkin, H.5
Wolfson, R.L.6
Kirak, O.7
Sabatini, D.D.8
Sabatini, D.M.9
-
63
-
-
33747043113
-
Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN
-
16804083
-
Mahimainathan L, Das F, Venkatesan B, Choudhury GG. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 2006; 55:2115-25; PMID:16804083; http://dx.doi.org/10.2337/db05-1326
-
(2006)
Diabetes
, vol.55
, pp. 2115-2125
-
-
Mahimainathan, L.1
Das, F.2
Venkatesan, B.3
Choudhury, G.G.4
-
64
-
-
84910145403
-
Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids
-
25402640
-
Zheng X, Liang Y, He Q, Yao R, Bao W, Bao L, Wang Y, Wang Z. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Int J Mol Sci 2014; 15:20753-69; PMID:25402640; http://dx.doi.org/10.3390/ijms151120753
-
(2014)
Int J Mol Sci
, vol.15
, pp. 20753-20769
-
-
Zheng, X.1
Liang, Y.2
He, Q.3
Yao, R.4
Bao, W.5
Bao, L.6
Wang, Y.7
Wang, Z.8
-
65
-
-
84958092655
-
Lysosomal recruitment of TSC2 is a universal response to cellular stress
-
26868506
-
Demetriades C, Plescher M, Teleman AA. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun 2016; 7:10662; PMID:26868506; http://dx.doi.org/10.1038/ncomms10662
-
(2016)
Nat Commun
, vol.7
, pp. 10662
-
-
Demetriades, C.1
Plescher, M.2
Teleman, A.A.3
-
66
-
-
1542677106
-
The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (>or = 10 nuclei) and small (
-
14504271
-
Manolson MF, Yu H, Chen W, Yao Y, Li K, Lees RL, Heersche JN. The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (>or = 10 nuclei) and small (
-
(2003)
J Biol Chem
, vol.278
, pp. 49271-49278
-
-
Manolson, M.F.1
Yu, H.2
Chen, W.3
Yao, Y.4
Li, K.5
Lees, R.L.6
Heersche, J.N.7
-
67
-
-
0025879941
-
Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles
-
1908087
-
Mortensen RM, Zubiaur M, Neer EJ, Seidman JG. Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles. Proc Natl Acad Sci U S A 1991; 88:7036-40; PMID:1908087; http://dx.doi.org/10.1073/pnas.88.16.7036
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 7036-7040
-
-
Mortensen, R.M.1
Zubiaur, M.2
Neer, E.J.3
Seidman, J.G.4
-
68
-
-
84907546604
-
Molecular characterization of arylsulfatase G: expression, processing, glycosylation, transport, and activity
-
25135642
-
Kowalewski B, Lubke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, Damme M. Molecular characterization of arylsulfatase G:expression, processing, glycosylation, transport, and activity. J Biol Chem 2014; 289:27992-8005; PMID:25135642; http://dx.doi.org/10.1074/jbc.M114.584144
-
(2014)
J Biol Chem
, vol.289
, pp. 27992-28005
-
-
Kowalewski, B.1
Lubke, T.2
Kollmann, K.3
Braulke, T.4
Reinheckel, T.5
Dierks, T.6
Damme, M.7
-
69
-
-
33749354488
-
[Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat]
-
13999241
-
Wattiaux R, Wibo M, Baudhuin P. [Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat]. Arch Int Physiol Biochim 1963; 71:140-2; PMID:13999241
-
(1963)
Arch Int Physiol Biochim
, vol.71
, pp. 140-142
-
-
Wattiaux, R.1
Wibo, M.2
Baudhuin, P.3
|