메뉴 건너뛰기




Volumn 36, Issue 12, 2017, Pages 1946-1963

Comparing the performance of propensity score methods in healthcare database studies with rare outcomes

Author keywords

epidemiology; healthcare databases; propensity score; risk ratio; simulation

Indexed keywords

COHORT ANALYSIS; DATA BASE; HUMAN; LOGISTIC REGRESSION ANALYSIS; PROPENSITY SCORE; RISK FACTOR; SIMULATION; BAYES THEOREM; CAUSALITY; COMPARATIVE STUDY; FACTUAL DATABASE; PROBABILITY; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL BIAS; STATISTICAL MODEL; TREATMENT OUTCOME;

EID: 85013290379     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7250     Document Type: Article
Times cited : (84)

References (65)
  • 1
    • 18044398603 scopus 로고    scopus 로고
    • A review of uses of health care utilization databases for epidemiologic research on therapeutics
    • Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. Journal of Clinical Epidemiology 2005; 58:323–337.
    • (2005) Journal of Clinical Epidemiology , vol.58 , pp. 323-337
    • Schneeweiss, S.1    Avorn, J.2
  • 5
    • 84893497566 scopus 로고    scopus 로고
    • Antidepressant class, age, and the risk of deliberate self-harm: a propensity score matched cohort study of SSRI and SNRI users in the USA
    • Miller M, Pate V, Swanson SA, Azrael D, White A, Stürmer T. Antidepressant class, age, and the risk of deliberate self-harm: a propensity score matched cohort study of SSRI and SNRI users in the USA. CNS Drugs 2014; 28:79–88.
    • (2014) CNS Drugs , vol.28 , pp. 79-88
    • Miller, M.1    Pate, V.2    Swanson, S.A.3    Azrael, D.4    White, A.5    Stürmer, T.6
  • 7
    • 84961845471 scopus 로고    scopus 로고
    • Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records
    • Low YS, Gallego B, Shah NH. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records. Journal of Comparative Effectiveness Research 2016; 5:179–192.
    • (2016) Journal of Comparative Effectiveness Research , vol.5 , pp. 179-192
    • Low, Y.S.1    Gallego, B.2    Shah, N.H.3
  • 11
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda M, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. American Journal of Epidemiology 2003; 158:280–287.
    • (2003) American Journal of Epidemiology , vol.158 , pp. 280-287
    • Cepeda, M.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 12
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 13
    • 4444230264 scopus 로고    scopus 로고
    • Stratification weighting via the propensity score in estimation of causal treatment effects: a comparative study
    • Lunceford JK, Davidian M. Stratification weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23:2937–2960.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 14
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin P. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078–3094.
    • (2007) Statistics in Medicine , vol.26 , pp. 3078-3094
    • Austin, P.1
  • 15
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27:2037–2049.
    • (2008) Statistics in Medicine , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 16
    • 85019273620 scopus 로고    scopus 로고
    • Inverse probability weighted estimation of the marginal odds ratio: correspondence regarding “The performance of different propensity score methods for estimating marginal odds ratios” by P Austin
    • Statistics in medicine. 2008;275556Ű5559
    • Forbes A, Shortreed S. Inverse probability weighted estimation of the marginal odds ratio: correspondence regarding “The performance of different propensity score methods for estimating marginal odds ratios” by P Austin. Statictics in Medicine 2007; 26:3078–3094. Statistics in medicine. 2008;27:5556Ű5559.
    • (2007) Statictics in Medicine , vol.26 , pp. 3078-3094
    • Forbes, A.1    Shortreed, S.2
  • 17
    • 77957301897 scopus 로고    scopus 로고
    • Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distributiona simulation study
    • Stürmer T, Rothman K, Avorn J, Glynn RJ. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distributiona simulation study. American Journal of Epidemiology 2010; 172:843–854.
    • (2010) American Journal of Epidemiology , vol.172 , pp. 843-854
    • Stürmer, T.1    Rothman, K.2    Avorn, J.3    Glynn, R.J.4
  • 18
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9:403.
    • (2004) Psychological Methods , vol.9 , pp. 403
    • McCaffrey, D.1    Ridgeway, G.2    Morral, A.3
  • 20
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee B, Lessler J, Stuart E. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29:337–346.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.1    Lessler, J.2    Stuart, E.3
  • 21
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk M. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology 2010; 63:826–833.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.3
  • 26
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association 1983; 78:316–331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 28
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman A, Jakulin A, Pittau MG, SU Y-S. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics 2008:1360–1383.
    • (2008) The Annals of Applied Statistics , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.4
  • 29
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001:1189–1232.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.H.1
  • 31
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics 2005; 61:962–973.
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 32
    • 46249085099 scopus 로고    scopus 로고
    • Comment: performance of double-robust estimators when“ Inverse Probability” weights are highly variable
    • Robins J, Sued M, Lei-Gomez Q, Rotnitzky A. Comment: performance of double-robust estimators when“ Inverse Probability” weights are highly variable. Statistical Science 2007:544—559.
    • (2007) Statistical Science , pp. 544-559
    • Robins, J.1    Sued, M.2    Lei-Gomez, Q.3    Rotnitzky, A.4
  • 33
    • 84893777424 scopus 로고    scopus 로고
    • A comparison of 12 algorithms for matching on the propensity score
    • Austin PC. A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine 2014; 33:1057–1069.
    • (2014) Statistics in Medicine , vol.33 , pp. 1057-1069
    • Austin, P.C.1
  • 34
    • 84919832679 scopus 로고    scopus 로고
    • New evidence on the finite sample properties of propensity score reweighting and matching estimators
    • Busso M, DiNardo J, McCrary J. New evidence on the finite sample properties of propensity score reweighting and matching estimators. Review of Economics and Statistics 2014; 96:885–897.
    • (2014) Review of Economics and Statistics , vol.96 , pp. 885-897
    • Busso, M.1    DiNardo, J.2    McCrary, J.3
  • 35
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen BB. Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association 2004; 99:609–618.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 37
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum P, Rubin D. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516–524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.1    Rubin, D.2
  • 38
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano K, Imbens G, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003; 71:1161–1189.
    • (2003) Econometrica , vol.71 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.2    Ridder, G.3
  • 39
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins J, Hernan M, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11:550–560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.1    Hernan, M.2    Brumback, B.3
  • 40
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168:656–664.
    • (2008) American Journal of Epidemiology , vol.168 , pp. 656-664
    • Cole, S.R.1    Hernan, M.A.2
  • 41
    • 84896544710 scopus 로고    scopus 로고
    • A weighting analogue to pair matching in propensity score analysis
    • Li L, Greene T. A weighting analogue to pair matching in propensity score analysis. The International Journal of Biostatistics 2013; 9:215–234.
    • (2013) The International Journal of Biostatistics , vol.9 , pp. 215-234
    • Li, L.1    Greene, T.2
  • 42
    • 70449427995 scopus 로고    scopus 로고
    • Testing treatment effects in unconfounded studies under model misspecification: Logistic regression, discretization, and their combination
    • Cangul M, Chretien Y, Gutman R, Rubin DB. Testing treatment effects in unconfounded studies under model misspecification: Logistic regression, discretization, and their combination. Statistics in Medicine 2009; 28:2531–2551.
    • (2009) Statistics in Medicine , vol.28 , pp. 2531-2551
    • Cangul, M.1    Chretien, Y.2    Gutman, R.3    Rubin, D.B.4
  • 43
    • 84998630701 scopus 로고    scopus 로고
    • On regression adjustment for the propensity score
    • Vansteelandt S, Daniel RM. On regression adjustment for the propensity score. Statistics in Medicine 2014; 33:4053–4072.
    • (2014) Statistics in Medicine , vol.33 , pp. 4053-4072
    • Vansteelandt, S.1    Daniel, R.M.2
  • 46
    • 84890125193 scopus 로고    scopus 로고
    • Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large-scale studies
    • Franklin JM, Rassen JA, Bartels DB, Schneeweiss S. Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large-scale studies. Epidemiology 2014; 25:126–133.
    • (2014) Epidemiology , vol.25 , pp. 126-133
    • Franklin, J.M.1    Rassen, J.A.2    Bartels, D.B.3    Schneeweiss, S.4
  • 47
    • 85019271175 scopus 로고    scopus 로고
    • Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes
    • Gutman R, Rubin D. Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes. Statistics in Medicine 2012.
    • (2012) Statistics in Medicine
    • Gutman, R.1    Rubin, D.2
  • 48
    • 60449086859 scopus 로고    scopus 로고
    • Dealing with limited overlap in estimation of average treatment effects
    • Crump RK, Hotz VJ, Imbens GW, Mitnik OA. Dealing with limited overlap in estimation of average treatment effects. Biometrika 2009; 96:187–199.
    • (2009) Biometrika , vol.96 , pp. 187-199
    • Crump, R.K.1    Hotz, V.J.2    Imbens, G.W.3    Mitnik, O.A.4
  • 49
    • 84856187945 scopus 로고    scopus 로고
    • Causal inference without balance checking: coarsened exact matching
    • Iacus SM, King G, Porro G. Causal inference without balance checking: coarsened exact matching. Political Analysis 2012; 20:1–24.
    • (2012) Political Analysis , vol.20 , pp. 1-24
    • Iacus, S.M.1    King, G.2    Porro, G.3
  • 50
    • 84894153340 scopus 로고    scopus 로고
    • Studies with many covariates and few outcomes: selecting covariates and implementing propensity-scorebased confounding adjustments
    • Patorno E, Glynn RJ, Hernández-Díaz S, Liu J, Schneeweiss S. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-scorebased confounding adjustments. Epidemiology 2014; 25:268–278.
    • (2014) Epidemiology , vol.25 , pp. 268-278
    • Patorno, E.1    Glynn, R.J.2    Hernández-Díaz, S.3    Liu, J.4    Schneeweiss, S.5
  • 51
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 2009; 20:512–522.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 52
    • 84943555084 scopus 로고    scopus 로고
    • Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses
    • kwv108
    • Franklin JM, Eddings W, Glynn RJ, Schneeweiss S. Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses. American Journal of Epidemiology 2015.kwv108.
    • (2015) American Journal of Epidemiology
    • Franklin, J.M.1    Eddings, W.2    Glynn, R.J.3    Schneeweiss, S.4
  • 56
    • 77958600686 scopus 로고    scopus 로고
    • Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
    • Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics 2011; 10:150–161.
    • (2011) Pharmaceutical Statistics , vol.10 , pp. 150-161
    • Austin, P.C.1
  • 59
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
    • Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754–768.
    • (2007) Statistics in Medicine , vol.26 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.3    Anderson, G.M.4
  • 60
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Statistics in Medicine 2013; 32:2837–2849.
    • (2013) Statistics in Medicine , vol.32 , pp. 2837-2849
    • Austin, P.C.1
  • 63
    • 84925282729 scopus 로고    scopus 로고
    • Improving propensity score estimators' robustness to model misspecification using super learner
    • Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators' robustness to model misspecification using super learner. American Journal of Epidemiology 2015; 181:108–119.
    • (2015) American Journal of Epidemiology , vol.181 , pp. 108-119
    • Pirracchio, R.1    Petersen, M.L.2    Vanderlaan, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.