-
1
-
-
18044398603
-
A review of uses of health care utilization databases for epidemiologic research on therapeutics
-
Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. Journal of Clinical Epidemiology 2005; 58:323–337.
-
(2005)
Journal of Clinical Epidemiology
, vol.58
, pp. 323-337
-
-
Schneeweiss, S.1
Avorn, J.2
-
4
-
-
79959558713
-
The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
-
Patrick AR, Schneeweiss S, Brookhart MA, Glynn RJ, Rothman KJ, Avorn J, Stürmer T. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiology and Drug Safety 2011; 20:551–559.
-
(2011)
Pharmacoepidemiology and Drug Safety
, vol.20
, pp. 551-559
-
-
Patrick, A.R.1
Schneeweiss, S.2
Brookhart, M.A.3
Glynn, R.J.4
Rothman, K.J.5
Avorn, J.6
Stürmer, T.7
-
5
-
-
84893497566
-
Antidepressant class, age, and the risk of deliberate self-harm: a propensity score matched cohort study of SSRI and SNRI users in the USA
-
Miller M, Pate V, Swanson SA, Azrael D, White A, Stürmer T. Antidepressant class, age, and the risk of deliberate self-harm: a propensity score matched cohort study of SSRI and SNRI users in the USA. CNS Drugs 2014; 28:79–88.
-
(2014)
CNS Drugs
, vol.28
, pp. 79-88
-
-
Miller, M.1
Pate, V.2
Swanson, S.A.3
Azrael, D.4
White, A.5
Stürmer, T.6
-
6
-
-
84983096123
-
Safety and effectiveness of dabigatran and warfarin in routine care of patients with atrial fibrillation
-
Seeger JD, Bykov K, Bartels DB, Huybrechts K, Zint K, Schneeweiss S. Safety and effectiveness of dabigatran and warfarin in routine care of patients with atrial fibrillation. Thrombosis and Haemostasis 2015; 114:1277–1289.
-
(2015)
Thrombosis and Haemostasis
, vol.114
, pp. 1277-1289
-
-
Seeger, J.D.1
Bykov, K.2
Bartels, D.B.3
Huybrechts, K.4
Zint, K.5
Schneeweiss, S.6
-
7
-
-
84961845471
-
Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records
-
Low YS, Gallego B, Shah NH. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records. Journal of Comparative Effectiveness Research 2016; 5:179–192.
-
(2016)
Journal of Comparative Effectiveness Research
, vol.5
, pp. 179-192
-
-
Low, Y.S.1
Gallego, B.2
Shah, N.H.3
-
8
-
-
84962323033
-
A multicenter observational study of incretin-based drugs and heart failure
-
Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, Hu N, Paterson JM, Targownik L, Turin TC, Udell JA, Ernst P. A multicenter observational study of incretin-based drugs and heart failure. New England Journal of Medicine 2016; 374:1145–1154.
-
(2016)
New England Journal of Medicine
, vol.374
, pp. 1145-1154
-
-
Filion, K.B.1
Azoulay, L.2
Platt, R.W.3
Dahl, M.4
Dormuth, C.R.5
Clemens, K.K.6
Hu, N.7
Paterson, J.M.8
Targownik, L.9
Turin, T.C.10
Udell, J.A.11
Ernst, P.12
-
9
-
-
84877589655
-
Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates
-
Brunelli SM, Gagne JJ, Huybrechts KF, Wang SV, Patrick AR, Rothman KJ, Seeger JD. Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates. Pharmacoepidemiology and Drug Safety 2013; 22:542–550.
-
(2013)
Pharmacoepidemiology and Drug Safety
, vol.22
, pp. 542-550
-
-
Brunelli, S.M.1
Gagne, J.J.2
Huybrechts, K.F.3
Wang, S.V.4
Patrick, A.R.5
Rothman, K.J.6
Seeger, J.D.7
-
10
-
-
84959318872
-
Controlling confounding of treatment effects in administrative data in the presence of time-varying baseline confounders
-
Gilbertson DT, Bradbury BD, Wetmore JB, Weinhandl ED, Monda KL, Liu J, Brookhart MA, Gustafson SK, Roberts T, Collins AJ, Rothman KJ. Controlling confounding of treatment effects in administrative data in the presence of time-varying baseline confounders. Estimating Confounded Treatment Effects. Pharmacoepidemiology and Drug Safety 2015; 25:269–277.
-
(2015)
Estimating Confounded Treatment Effects. Pharmacoepidemiology and Drug Safety
, vol.25
, pp. 269-277
-
-
Gilbertson, D.T.1
Bradbury, B.D.2
Wetmore, J.B.3
Weinhandl, E.D.4
Monda, K.L.5
Liu, J.6
Brookhart, M.A.7
Gustafson, S.K.8
Roberts, T.9
Collins, A.J.10
Rothman, K.J.11
-
11
-
-
0041626110
-
Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
-
Cepeda M, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. American Journal of Epidemiology 2003; 158:280–287.
-
(2003)
American Journal of Epidemiology
, vol.158
, pp. 280-287
-
-
Cepeda, M.1
Boston, R.2
Farrar, J.T.3
Strom, B.L.4
-
12
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41–55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.1
Rubin, D.2
-
13
-
-
4444230264
-
Stratification weighting via the propensity score in estimation of causal treatment effects: a comparative study
-
Lunceford JK, Davidian M. Stratification weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23:2937–2960.
-
(2004)
Statistics in Medicine
, vol.23
, pp. 2937-2960
-
-
Lunceford, J.K.1
Davidian, M.2
-
14
-
-
34249863765
-
The performance of different propensity score methods for estimating marginal odds ratios
-
Austin P. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078–3094.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 3078-3094
-
-
Austin, P.1
-
15
-
-
44649173785
-
A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
-
Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27:2037–2049.
-
(2008)
Statistics in Medicine
, vol.27
, pp. 2037-2049
-
-
Austin, P.C.1
-
16
-
-
85019273620
-
Inverse probability weighted estimation of the marginal odds ratio: correspondence regarding “The performance of different propensity score methods for estimating marginal odds ratios” by P Austin
-
Statistics in medicine. 2008;275556Ű5559
-
Forbes A, Shortreed S. Inverse probability weighted estimation of the marginal odds ratio: correspondence regarding “The performance of different propensity score methods for estimating marginal odds ratios” by P Austin. Statictics in Medicine 2007; 26:3078–3094. Statistics in medicine. 2008;27:5556Ű5559.
-
(2007)
Statictics in Medicine
, vol.26
, pp. 3078-3094
-
-
Forbes, A.1
Shortreed, S.2
-
17
-
-
77957301897
-
Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distributiona simulation study
-
Stürmer T, Rothman K, Avorn J, Glynn RJ. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distributiona simulation study. American Journal of Epidemiology 2010; 172:843–854.
-
(2010)
American Journal of Epidemiology
, vol.172
, pp. 843-854
-
-
Stürmer, T.1
Rothman, K.2
Avorn, J.3
Glynn, R.J.4
-
18
-
-
10844272276
-
Propensity score estimation with boosted regression for evaluating causal effects in observational studies
-
McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9:403.
-
(2004)
Psychological Methods
, vol.9
, pp. 403
-
-
McCaffrey, D.1
Ridgeway, G.2
Morral, A.3
-
19
-
-
46349084991
-
Evaluating uses of data mining techniques in propensity score estimation: a simulation study
-
Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiology and Drug Safety 2008; 17:546–555.
-
(2008)
Pharmacoepidemiology and Drug Safety
, vol.17
, pp. 546-555
-
-
Setoguchi, S.1
Schneeweiss, S.2
Brookhart, M.A.3
Glynn, R.J.4
Cook, E.F.5
-
20
-
-
74749097452
-
Improving propensity score weighting using machine learning
-
Lee B, Lessler J, Stuart E. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29:337–346.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 337-346
-
-
Lee, B.1
Lessler, J.2
Stuart, E.3
-
21
-
-
77953607621
-
Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
-
Westreich D, Lessler J, Funk M. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology 2010; 63:826–833.
-
(2010)
Journal of Clinical Epidemiology
, vol.63
, pp. 826-833
-
-
Westreich, D.1
Lessler, J.2
Funk, M.3
-
24
-
-
0030474271
-
A simulation study of the number of events per variable in logistic regression analysis
-
Peduzzi P1, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996; 49:1373–1379.
-
(1996)
Journal of Clinical Epidemiology
, vol.49
, pp. 1373-1379
-
-
Peduzzi, P.1
Concato, J.2
Kemper, E.3
Holford, T.R.4
Feinstein, A.R.5
-
26
-
-
84950461478
-
Estimating the error rate of a prediction rule: improvement on cross-validation
-
Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association 1983; 78:316–331.
-
(1983)
Journal of the American Statistical Association
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
28
-
-
84865371361
-
A weakly informative default prior distribution for logistic and other regression models
-
Gelman A, Jakulin A, Pittau MG, SU Y-S. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics 2008:1360–1383.
-
(2008)
The Annals of Applied Statistics
, pp. 1360-1383
-
-
Gelman, A.1
Jakulin, A.2
Pittau, M.G.3
Su, Y.4
-
29
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001:1189–1232.
-
(2001)
Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.H.1
-
31
-
-
33644851650
-
Doubly robust estimation in missing data and causal inference models
-
Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics 2005; 61:962–973.
-
(2005)
Biometrics
, vol.61
, pp. 962-973
-
-
Bang, H.1
Robins, J.M.2
-
32
-
-
46249085099
-
Comment: performance of double-robust estimators when“ Inverse Probability” weights are highly variable
-
Robins J, Sued M, Lei-Gomez Q, Rotnitzky A. Comment: performance of double-robust estimators when“ Inverse Probability” weights are highly variable. Statistical Science 2007:544—559.
-
(2007)
Statistical Science
, pp. 544-559
-
-
Robins, J.1
Sued, M.2
Lei-Gomez, Q.3
Rotnitzky, A.4
-
33
-
-
84893777424
-
A comparison of 12 algorithms for matching on the propensity score
-
Austin PC. A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine 2014; 33:1057–1069.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 1057-1069
-
-
Austin, P.C.1
-
34
-
-
84919832679
-
New evidence on the finite sample properties of propensity score reweighting and matching estimators
-
Busso M, DiNardo J, McCrary J. New evidence on the finite sample properties of propensity score reweighting and matching estimators. Review of Economics and Statistics 2014; 96:885–897.
-
(2014)
Review of Economics and Statistics
, vol.96
, pp. 885-897
-
-
Busso, M.1
DiNardo, J.2
McCrary, J.3
-
35
-
-
4944238507
-
Full matching in an observational study of coaching for the SAT
-
Hansen BB. Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association 2004; 99:609–618.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 609-618
-
-
Hansen, B.B.1
-
37
-
-
84949193513
-
Reducing bias in observational studies using subclassification on the propensity score
-
Rosenbaum P, Rubin D. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516–524.
-
(1984)
Journal of the American Statistical Association
, vol.79
, pp. 516-524
-
-
Rosenbaum, P.1
Rubin, D.2
-
38
-
-
0141495120
-
Efficient estimation of average treatment effects using the estimated propensity score
-
Hirano K, Imbens G, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003; 71:1161–1189.
-
(2003)
Econometrica
, vol.71
, pp. 1161-1189
-
-
Hirano, K.1
Imbens, G.2
Ridder, G.3
-
39
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
Robins J, Hernan M, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11:550–560.
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.1
Hernan, M.2
Brumback, B.3
-
40
-
-
51749124303
-
Constructing inverse probability weights for marginal structural models
-
Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168:656–664.
-
(2008)
American Journal of Epidemiology
, vol.168
, pp. 656-664
-
-
Cole, S.R.1
Hernan, M.A.2
-
41
-
-
84896544710
-
A weighting analogue to pair matching in propensity score analysis
-
Li L, Greene T. A weighting analogue to pair matching in propensity score analysis. The International Journal of Biostatistics 2013; 9:215–234.
-
(2013)
The International Journal of Biostatistics
, vol.9
, pp. 215-234
-
-
Li, L.1
Greene, T.2
-
42
-
-
70449427995
-
Testing treatment effects in unconfounded studies under model misspecification: Logistic regression, discretization, and their combination
-
Cangul M, Chretien Y, Gutman R, Rubin DB. Testing treatment effects in unconfounded studies under model misspecification: Logistic regression, discretization, and their combination. Statistics in Medicine 2009; 28:2531–2551.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 2531-2551
-
-
Cangul, M.1
Chretien, Y.2
Gutman, R.3
Rubin, D.B.4
-
43
-
-
84998630701
-
On regression adjustment for the propensity score
-
Vansteelandt S, Daniel RM. On regression adjustment for the propensity score. Statistics in Medicine 2014; 33:4053–4072.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 4053-4072
-
-
Vansteelandt, S.1
Daniel, R.M.2
-
46
-
-
84890125193
-
Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large-scale studies
-
Franklin JM, Rassen JA, Bartels DB, Schneeweiss S. Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large-scale studies. Epidemiology 2014; 25:126–133.
-
(2014)
Epidemiology
, vol.25
, pp. 126-133
-
-
Franklin, J.M.1
Rassen, J.A.2
Bartels, D.B.3
Schneeweiss, S.4
-
47
-
-
85019271175
-
Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes
-
Gutman R, Rubin D. Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes. Statistics in Medicine 2012.
-
(2012)
Statistics in Medicine
-
-
Gutman, R.1
Rubin, D.2
-
48
-
-
60449086859
-
Dealing with limited overlap in estimation of average treatment effects
-
Crump RK, Hotz VJ, Imbens GW, Mitnik OA. Dealing with limited overlap in estimation of average treatment effects. Biometrika 2009; 96:187–199.
-
(2009)
Biometrika
, vol.96
, pp. 187-199
-
-
Crump, R.K.1
Hotz, V.J.2
Imbens, G.W.3
Mitnik, O.A.4
-
49
-
-
84856187945
-
Causal inference without balance checking: coarsened exact matching
-
Iacus SM, King G, Porro G. Causal inference without balance checking: coarsened exact matching. Political Analysis 2012; 20:1–24.
-
(2012)
Political Analysis
, vol.20
, pp. 1-24
-
-
Iacus, S.M.1
King, G.2
Porro, G.3
-
50
-
-
84894153340
-
Studies with many covariates and few outcomes: selecting covariates and implementing propensity-scorebased confounding adjustments
-
Patorno E, Glynn RJ, Hernández-Díaz S, Liu J, Schneeweiss S. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-scorebased confounding adjustments. Epidemiology 2014; 25:268–278.
-
(2014)
Epidemiology
, vol.25
, pp. 268-278
-
-
Patorno, E.1
Glynn, R.J.2
Hernández-Díaz, S.3
Liu, J.4
Schneeweiss, S.5
-
51
-
-
67651042983
-
High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
-
Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 2009; 20:512–522.
-
(2009)
Epidemiology
, vol.20
, pp. 512-522
-
-
Schneeweiss, S.1
Rassen, J.A.2
Glynn, R.J.3
Avorn, J.4
Mogun, H.5
Brookhart, M.A.6
-
52
-
-
84943555084
-
Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses
-
kwv108
-
Franklin JM, Eddings W, Glynn RJ, Schneeweiss S. Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses. American Journal of Epidemiology 2015.kwv108.
-
(2015)
American Journal of Epidemiology
-
-
Franklin, J.M.1
Eddings, W.2
Glynn, R.J.3
Schneeweiss, S.4
-
53
-
-
33645236260
-
Variable selection for propensity score models
-
Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. American Journal of Epidemiology 2006; 163:1149–1156.
-
(2006)
American Journal of Epidemiology
, vol.163
, pp. 1149-1156
-
-
Brookhart, M.A.1
Schneeweiss, S.2
Rothman, K.J.3
Glynn, R.J.4
Avorn, J.5
Stürmer, T.6
-
55
-
-
80053281276
-
Effects of adjusting for instrumental variables on bias and precision of effect estimates
-
Myers JA, Rassen JA, Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, Joffe MM, Glynn RJ. Effects of adjusting for instrumental variables on bias and precision of effect estimates. American Journal of Epidemiology 2011; 174:1213–1222.
-
(2011)
American Journal of Epidemiology
, vol.174
, pp. 1213-1222
-
-
Myers, J.A.1
Rassen, J.A.2
Gagne, J.J.3
Huybrechts, K.F.4
Schneeweiss, S.5
Rothman, K.J.6
Joffe, M.M.7
Glynn, R.J.8
-
56
-
-
77958600686
-
Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
-
Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics 2011; 10:150–161.
-
(2011)
Pharmaceutical Statistics
, vol.10
, pp. 150-161
-
-
Austin, P.C.1
-
57
-
-
10844259913
-
Principles for modeling propensity scores in medical research: a systematic literature review
-
Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13:841–853.
-
(2004)
Pharmacoepidemiology and Drug Safety
, vol.13
, pp. 841-853
-
-
Weitzen, S.1
Lapane, K.L.2
Toledano, A.Y.3
Hume, A.L.4
Mor, V.5
-
59
-
-
33846813595
-
Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
-
Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754–768.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 754-768
-
-
Austin, P.C.1
Grootendorst, P.2
Normand, S.L.3
Anderson, G.M.4
-
60
-
-
84879167098
-
The performance of different propensity score methods for estimating marginal hazard ratios
-
Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Statistics in Medicine 2013; 32:2837–2849.
-
(2013)
Statistics in Medicine
, vol.32
, pp. 2837-2849
-
-
Austin, P.C.1
-
63
-
-
84925282729
-
Improving propensity score estimators' robustness to model misspecification using super learner
-
Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators' robustness to model misspecification using super learner. American Journal of Epidemiology 2015; 181:108–119.
-
(2015)
American Journal of Epidemiology
, vol.181
, pp. 108-119
-
-
Pirracchio, R.1
Petersen, M.L.2
Vanderlaan, M.3
|