메뉴 건너뛰기




Volumn 181, Issue 2, 2015, Pages 108-119

Improving propensity score estimators' robustness to model misspecification using Super Learner

Author keywords

Epidemiologic methods; Inverse probability of treatment weighting; Machine learning; Matching; Propensity score; Super Learner

Indexed keywords

COVARIANCE ANALYSIS; DATA SET; EPIDEMIOLOGY; ERROR CORRECTION; ESTIMATION METHOD; MACHINE LEARNING; NUMERICAL MODEL; REGRESSION ANALYSIS; SIMULATION;

EID: 84925282729     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwu253     Document Type: Article
Times cited : (151)

References (61)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70(1):41-55
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer T, Joshi M, Glynn RJ, et al. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59(5):437-447
    • (2006) J Clin Epidemiol. , vol.59 , Issue.5 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3
  • 3
    • 78649325303 scopus 로고    scopus 로고
    • Propensity scores in intensive care and anaesthesiology literature: A systematic review
    • Gayat E, Pirracchio R, Resche-Rigon M, et al. Propensity scores in intensive care and anaesthesiology literature: a systematic review. Intensive Care Med. 2010;36(12):1993-2003
    • (2010) Intensive Care Med. , vol.36 , Issue.12 , pp. 1993-2003
    • Gayat, E.1    Pirracchio, R.2    Resche-Rigon, M.3
  • 4
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39(1):33-38
    • (1985) Am Stat. , vol.39 , Issue.1 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 5
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984;79(387):516-524
    • (1984) J Am Stat Assoc. , vol.79 , Issue.387 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 6
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265-2281
    • (1998) Stat Med. , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 7
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007;26(4):734-753
    • (2007) Stat Med. , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 8
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med. 2007; 26(16):3078-3094
    • (2007) Stat Med. , vol.26 , Issue.16 , pp. 3078-3094
    • Austin, P.C.1
  • 9
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating relative risks
    • Austin PC. The performance of different propensity-score methods for estimating relative risks. J Clin Epidemiol. 2008; 61(6):537-545
    • (2008) J Clin Epidemiol. , vol.61 , Issue.6 , pp. 537-545
    • Austin, P.C.1
  • 11
    • 33645236260 scopus 로고    scopus 로고
    • Variable selection for propensity score models
    • Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol. 2006; 163(12):1149-1156
    • (2006) Am J Epidemiol. , vol.163 , Issue.12 , pp. 1149-1156
    • Brookhart, M.A.1    Schneeweiss, S.2    Rothman, K.J.3
  • 12
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiol Drug Saf. 2004;13(12): 855-857
    • (2004) Pharmacoepidemiol Drug Saf. , vol.13 , Issue.12 , pp. 855-857
    • Rubin, D.B.1
  • 13
    • 0027717184 scopus 로고
    • Effects of misspecification of the propensity score on estimators of treatment effect
    • Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics. 1993;49(4): 1231-1236
    • (1993) Biometrics. , vol.49 , Issue.4 , pp. 1231-1236
    • Drake, C.1
  • 14
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci. 2007;22(4):523-539
    • (2007) Stat Sci. , vol.22 , Issue.4 , pp. 523-539
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 16
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: Neural Networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk MJ. Propensity score estimation: Neural Networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol. 2010;63(8):826-833
    • (2010) J Clin Epidemiol. , vol.63 , Issue.8 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 17
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods. 2004;9(4):403-425
    • (2004) Psychol Methods. , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 18
    • 33645210305 scopus 로고    scopus 로고
    • Indications for propensity scores and review of their use in pharmacoepidemiology
    • Glynn RJ, Schneeweiss S, Stürmer T. Indications for propensity scores and review of their use in pharmacoepidemiology. Basic Clin Pharmacol Toxicol. 2006;98(3):253-259
    • (2006) Basic Clin Pharmacol Toxicol. , vol.98 , Issue.3 , pp. 253-259
    • Glynn, R.J.1    Schneeweiss, S.2    Stürmer, T.3
  • 19
    • 33748347921 scopus 로고    scopus 로고
    • Marijuana use and depression among adults: Testing for causal associations
    • Harder VS, Morral AR, Arkes J. Marijuana use and depression among adults: testing for causal associations. Addiction. 2006; 101(10):1463-1472
    • (2006) Addiction. , vol.101 , Issue.10 , pp. 1463-1472
    • Harder, V.S.1    Morral, A.R.2    Arkes, J.3
  • 20
    • 51749097176 scopus 로고    scopus 로고
    • Adolescent cannabis problems and young adult depression: Male-female stratified propensity score analyses
    • Harder VS, Stuart EA, Anthony JC. Adolescent cannabis problems and young adult depression: male-female stratified propensity score analyses.AmJ Epidemiol. 2008;168(6):592-601
    • (2008) Am J Epidemiol. , vol.168 , Issue.6 , pp. 592-601
    • Harder, V.S.1    Stuart, E.A.2    Anthony, J.C.3
  • 21
    • 28444464482 scopus 로고    scopus 로고
    • Propensity scores: An introduction and experimental test
    • Luellen JK, Shadish WR, Clark MH. Propensity scores: an introduction and experimental test. Eval Rev. 2005;29(6): 530-558
    • (2005) Eval Rev. , vol.29 , Issue.6 , pp. 530-558
    • Luellen, J.K.1    Shadish, W.R.2    Clark, M.H.3
  • 22
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: A simulation study
    • Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Saf. 2008;17(6): 546-555
    • (2008) Pharmacoepidemiol Drug Saf. , vol.17 , Issue.6 , pp. 546-555
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 23
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29(3): 337-346
    • (2010) Stat Med. , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 24
    • 26644446561 scopus 로고    scopus 로고
    • Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
    • Dudoit S, van der Laan MJ. Asymptotics of cross-validated risk estimation in estimator selection and performance assessment Stat Methodol. 2005;2(2):131-154
    • (2005) Stat Methodol. , vol.2 , Issue.2 , pp. 131-154
    • Dudoit, S.1    Van Der Laan, M.J.2
  • 26
    • 34548752212 scopus 로고    scopus 로고
    • The cross-validated adaptive epsilon-net estimator
    • van der Laan MJ, Dudoit S, van der Vaart A. The cross-validated adaptive epsilon-net estimator. Stat Dec. 2006;24(3):373-395
    • (2006) Stat Dec. , vol.24 , Issue.3 , pp. 373-395
    • Van Der Laan, M.J.1    Dudoit, S.2    Van Der Vaart, A.3
  • 27
    • 33847387164 scopus 로고    scopus 로고
    • Super learning: An application to the prediction of HIV-1 drug resistance
    • Article7
    • Sinisi SE, Polley EC, Petersen ML, et al. Super learning: an application to the prediction of HIV-1 drug resistance. Stat Appl Genet Mol Biol. 2007;6:Article7
    • (2007) Stat Appl Genet Mol Biol. , vol.6
    • Sinisi, S.E.1    Polley, E.C.2    Petersen, M.L.3
  • 30
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33(1):1-22
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 31
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman A, Jakulin A, Pittau MG, et al. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008;2(4):1360-1383
    • (2008) Ann Appl Stat. , vol.2 , Issue.4 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3
  • 32
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH. Multivariate adaptive regression splines. Ann Stat. 1991;19(1):1-67
    • (1991) Ann Stat. , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 33
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1-26
    • (2008) J Stat Softw. , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 35
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32
    • (2001) Mach Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 37
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn. 1996;24(2): 123-140
    • (1996) Mach Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 38
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802-813
    • (2008) J Anim Ecol. , vol.77 , Issue.4 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 39
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273-297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 42
    • 79961226937 scopus 로고    scopus 로고
    • Multivariate and propensity score matching software with automated balance optimization: The matching package for R
    • Sekhon J. Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J Stat Softw. 2011;42(7):1-52
    • (2011) J Stat Softw. , vol.42 , Issue.7 , pp. 1-52
    • Sekhon, J.1
  • 43
    • 33645024678 scopus 로고    scopus 로고
    • Large sample properties of matching estimators for average treatment effects
    • Abadie A, Imbens GW. Large sample properties of matching estimators for average treatment effects. Econometrica. 2006; 74(1):235-267
    • (2006) Econometrica. , vol.74 , Issue.1 , pp. 235-267
    • Abadie, A.1    Imbens, G.W.2
  • 45
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econ Stat. 2004;86(1): 4-29
    • (2004) Rev Econ Stat. , vol.86 , Issue.1 , pp. 4-29
    • Imbens, G.W.1
  • 46
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensityscore matched samples
    • Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensityscore matched samples. Stat Med. 2009;28(25):3083-3107
    • (2009) Stat Med. , vol.28 , Issue.25 , pp. 3083-3107
    • Austin, P.C.1
  • 47
    • 84862907581 scopus 로고    scopus 로고
    • Diagnosing and responding to violations in the positivity assumption
    • Petersen ML, Porter KE, Gruber S, et al. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res. 2012;21(1):31-54
    • (2012) Stat Methods Med Res. , vol.21 , Issue.1 , pp. 31-54
    • Petersen, M.L.1    Porter, K.E.2    Gruber, S.3
  • 48
    • 17244379268 scopus 로고    scopus 로고
    • Weaknesses of goodness-of-fit tests for evaluating propensity score models: The case of the omitted confounder
    • Weitzen S, Lapane KL, Toledano AY, et al. Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder. Pharmacoepidemiol Drug Saf 2005;14(4):227-238
    • (2005) Pharmacoepidemiol Drug Saf , vol.14 , Issue.4 , pp. 227-238
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3
  • 49
    • 79951981015 scopus 로고    scopus 로고
    • The role of the c-statistic in variable selection for propensity score models
    • Westreich D, Cole SR, Funk MJ, et al. The role of the c-statistic in variable selection for propensity score models Pharmacoepidemiol Drug Saf. 2011;20(3):317-320
    • (2011) Pharmacoepidemiol Drug Saf. , vol.20 , Issue.3 , pp. 317-320
    • Westreich, D.1    Cole, S.R.2    Funk, M.J.3
  • 50
    • 84902296033 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores?
    • Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores? Int J Stat Econ. 2012;9(A12):107-127
    • (2012) Int J Stat Econ. , vol.9 , Issue.A12 , pp. 107-127
    • Bhattacharya, J.1    Vogt, W.B.2
  • 51
    • 48249118348 scopus 로고    scopus 로고
    • Impact of misspecification of the treatment model on estimates from a marginal structural model
    • Lefebvre G, Delaney JAC, Platt RW. Impact of misspecification of the treatment model on estimates from a marginal structural model. Stat Med. 2008;27(18):3629-3642
    • (2008) Stat Med. , vol.27 , Issue.18 , pp. 3629-3642
    • Lefebvre, G.1    Delaney, J.A.C.2    Platt, R.W.3
  • 52
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S, Rassen JA, Glynn RJ, et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20(4):512-522
    • (2009) Epidemiology. , vol.20 , Issue.4 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3
  • 53
    • 79958845225 scopus 로고    scopus 로고
    • Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples
    • Rassen JA, Glynn RJ, Brookhart MA, et al. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011;173(12): 1404-1413
    • (2011) Am J Epidemiol. , vol.173 , Issue.12 , pp. 1404-1413
    • Rassen, J.A.1    Glynn, R.J.2    Brookhart, M.A.3
  • 54
    • 84856034091 scopus 로고    scopus 로고
    • Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system
    • Rassen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf. 2012;21(suppl 1):41-49
    • (2012) Pharmacoepidemiol Drug Saf. , vol.21 , pp. 41-49
    • Rassen, J.A.1    Schneeweiss, S.2
  • 55
    • 77953150321 scopus 로고    scopus 로고
    • Collaborative double robust targeted maximum likelihood estimation
    • Article 17
    • van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat. 2010; 6(1):Article 17
    • (2010) Int J Biostat. , vol.6 , Issue.1
    • Van Der Laan, M.J.1    Gruber, S.2
  • 56
    • 84902511137 scopus 로고    scopus 로고
    • Targeted estimation of nuisance parameters to obtain valid statistical inference
    • van der Laan MJ. Targeted estimation of nuisance parameters to obtain valid statistical inference. Int J Biostat. 2014;10(1): 29-57
    • (2014) Int J Biostat. , vol.10 , Issue.1 , pp. 29-57
    • Van Der Laan, M.J.1
  • 57
    • 1542784440 scopus 로고    scopus 로고
    • A note on the efficiency of sandwich covariance matrix estimation
    • Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. J Am Stat Assoc. 2001;96(456): 1387-1396
    • (2001) J Am Stat Assoc. , vol.96 , Issue.456 , pp. 1387-1396
    • Kauermann, G.1    Carroll, R.J.2
  • 58
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-2960
    • (2004) Stat Med. , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 59
    • 84893777424 scopus 로고    scopus 로고
    • A comparison of 12 algorithms for matching on the propensity score
    • Austin PC. A comparison of 12 algorithms for matching on the propensity score. Stat Med. 2014;33(6):1057-1069
    • (2014) Stat Med. , vol.33 , Issue.6 , pp. 1057-1069
    • Austin, P.C.1
  • 60
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11(5): 561-570
    • (2000) Epidemiology. , vol.11 , Issue.5 , pp. 561-570
    • Hernán, M.A.1    Brumback, B.2    Robins, J.M.3
  • 61
    • 77149125892 scopus 로고    scopus 로고
    • Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals
    • Xu S, Ross C, Raebel MA, et al. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health. 2010;13(2): 273-277.
    • (2010) Value Health. , vol.13 , Issue.2 , pp. 273-277
    • Xu, S.1    Ross, C.2    Raebel, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.