메뉴 건너뛰기




Volumn , Issue , 2010, Pages 417-424

On a class of bias-amplifying variables that endanger effect estimates

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 80053137535     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (96)

References (28)
  • 1
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • DOI 10.1002/sim.2580
    • Austin, P., Grootendorst, P. and Anderson, G. (2007). A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 26 734-753 (Pubitemid 46206593)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 2
    • 77957553279 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores?
    • National Bureau of Economic Research, MA
    • Bhattacharya, J. and Vogt, W. (2007). Do instrumental variables belong in propensity scores? Tech. Rep. NBER Technical Working Paper 343, National Bureau of Economic Research, MA
    • (2007) Tech. Rep. NBER Technical Working Paper 343
    • Bhattacharya, J.1    Vogt, W.2
  • 5
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • DOI 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0. CO;2-B
    • D'Agostino, Jr., R. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 17 2265-2281 (Pubitemid 28466823)
    • (1998) Statistics in Medicine , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino Jr., R.B.1
  • 7
    • 84971238402 scopus 로고    scopus 로고
    • Causal diagrams
    • (K. Rothman, S. Greenland and T. Lash, eds.), 3rd ed. Lippincott, Williams & Wilkins, Philadelphia, PA
    • Glymour, M. and Greenland, S. (2008). Causal diagrams. In Modern Epidemiology (K. Rothman, S. Greenland and T. Lash, eds.), 3rd ed. Lippincott Williams & Wilkins, Philadelphia, PA, 183-209
    • (2008) Modern Epidemiology , pp. 183-209
    • Glymour, M.1    Greenland, S.2
  • 8
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland, S., Pearl, J. and Robins, J. (1999). Causal diagrams for epidemiologic research. Epidemiology 10 37-48 (Pubitemid 29014427)
    • (1999) Epidemiology , vol.10 , Issue.1 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 9
    • 1842533946 scopus 로고    scopus 로고
    • Using matching, instrumental variables, and control functions to estimate economic choice models
    • DOI 10.1162/003465304323023660
    • Heckman, J. and Navarro-Lozano, S. (2004). Using matching, instrumental variables, and control functions to estimate economic choice models. The Review of Economics and Statistics 86 30-57 (Pubitemid 38422765)
    • (2004) Review of Economics and Statistics , vol.86 , Issue.1 , pp. 30-57
    • Heckman, J.1    Navarro-Lozano, S.2
  • 10
    • 13944279789 scopus 로고    scopus 로고
    • A structural approach to selection bias
    • DOI 10.1097/01.ede.0000135174.63482.43
    • Hernán, M., Hernández-Diaz, S. and Robins, J. (2004). A structural approach to selection bias. Epidemiology 15 615-625 (Pubitemid 40416916)
    • (2004) Epidemiology , vol.15 , Issue.5 , pp. 615-625
    • Hernan, M.A.1    Hernandez-Diaz, S.2    Robins, J.M.3
  • 11
    • 44649182793 scopus 로고    scopus 로고
    • Discussion of research using propensity-score matching: Comments on 'A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine
    • DOI 10.1002/sim.3245
    • Hill, J. (2008). Comments on 'A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine. Statistics in Medicine 27 2055-2061 (Pubitemid 351772302)
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2055-2061
    • Hill, J.1
  • 12
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano, K. and Imbens, G. (2001). Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Services and Outcomes Research Methodology 2 259-278
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.2
  • 13
    • 84972538789 scopus 로고
    • Comment: Graphical models, causality, and intervention
    • Pearl, J. (1993). Comment: Graphical models, causality, and intervention. Statistical Science 8 266-269
    • (1993) Statistical Science , vol.8 , pp. 266-269
    • Pearl, J.1
  • 14
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl, J. (1995). Causal diagrams for empirical research. Biometrika 82 669-710
    • (1995) Biometrika , vol.82 , pp. 669-710
    • Pearl, J.1
  • 16
    • 77649285984 scopus 로고    scopus 로고
    • Tech. Rep. R-348, University of California, Los Angeles, CA
    • Pearl, J. (2009b). Myth, confusion, and science in causal analysis. Tech. Rep. R-348, University of California, Los Angeles, CA. 〈http://ftp.cs. ucla.edu/pub/stat ser/r348.pdf〉
    • (2009) Myth, Confusion, and Science in Causal Analysis
    • Pearl, J.1
  • 17
    • 67549105887 scopus 로고    scopus 로고
    • Remarks on the method of propensity scores
    • Pearl, J. (2009c). Remarks on the method of propensity scores. Statistics in Medicine 28 1415-1416. 〈http://ftp.cs.ucla.edu/pub/stat ser/r345-sim.pdf〉
    • (2009) Statistics in Medicine , vol.28 , pp. 1415-1416
    • Pearl, J.1
  • 18
    • 77649295233 scopus 로고    scopus 로고
    • An introduction to causal inference
    • DOI: 10.2202/1557-4679.1203
    • Pearl, J. (2010). An introduction to causal inference. The International Journal of Biostatistics 6 DOI: 10.2202/1557-4679.1203, 〈http://www. bepress.com/ijb/vol6/iss2/7/〉
    • (2010) The International Journal of Biostatistics , vol.6
    • Pearl, J.1
  • 19
    • 80053164941 scopus 로고    scopus 로고
    • Confounding equivalence in observational studies
    • Tech. Rep. R-343, 2010
    • Pearl, J. and Paz, A. (2010). Confounding equivalence in observational studies. Tech. Rep. R-343, 〈http://ftp.cs.ucla.edu/pub/statser/r343. pdf〉. Forthcoming, Proceedings of UAI, 2010
    • (2010) Forthcoming, Proceedings of UAI
    • Pearl, J.1    Paz, A.2
  • 20
    • 0035063108 scopus 로고    scopus 로고
    • Data, design, and background knowledge in etiologic inference
    • DOI 10.1097/00001648-200105000-00011
    • Robins, J. (2001). Data, design, and background knowledge in etiologic inference. Epidemiology 12 313-320 (Pubitemid 32336395)
    • (2001) Epidemiology , vol.12 , Issue.3 , pp. 313-320
    • Robins, J.M.1
  • 22
    • 77951622706 scopus 로고
    • The central role of propensity score in observational studies for causal effects
    • Rosenbaum, P. and Rubin, D. (1983). The central role of propensity score in observational studies for causal effects. Biometrika 70 41-55
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 23
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin, D. (2002). Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology 2 169-188
    • (2002) Health Services and Outcomes Research Methodology , vol.2 , pp. 169-188
    • Rubin, D.1
  • 24
    • 69949106881 scopus 로고    scopus 로고
    • Author's reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment group?
    • Rubin, D. (2009). Author's reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment group? Statistics in Medicine 28 1420-1423
    • (2009) Statistics in Medicine , vol.28 , pp. 1420-1423
    • Rubin, D.1
  • 25
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman, E., Cole, S. and Platt, R. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20 488-495
    • (2009) Epidemiology , vol.20 , pp. 488-495
    • Schisterman, E.1    Cole, S.2    Platt, R.3
  • 27
    • 0027468093 scopus 로고
    • Toward a clearer definition of confounding
    • Weinberg, C. (1993). Toward a clearer definition of confounding. American Journal of Epidemiology 137 1-8 (Pubitemid 23077302)
    • (1993) American Journal of Epidemiology , vol.137 , Issue.1 , pp. 1-8
    • Weinberg, C.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.