메뉴 건너뛰기




Volumn 12, Issue 1, 2012, Pages 29-43

Comparing treatments via the propensity score: Stratification or modeling?

Author keywords

Causal inference; Generalized additive model; Nonlinear modeling; Observational study; Optimal stratification; Propensity score

Indexed keywords

ARTICLE; DECISION MAKING; GENERALIZED ADDITIVE MODEL; HEALTH INSURANCE; MEAN SQUARED ERROR; MONTE CARLO METHOD; OBSERVATIONAL STUDY; OUTCOME ASSESSMENT; PATIENT CARE; PATIENT SATISFACTION; PRIORITY JOURNAL; PROPENSITY SCORE; REGRESSION ANALYSIS; STATISTICAL CONCEPTS; STATISTICAL MODEL; STRATIFICATION; SYSTEMATIC ERROR; TREATMENT OUTCOME; VALIDITY; VARIANCE;

EID: 84859099785     PISSN: 13873741     EISSN: 15729400     Source Type: Journal    
DOI: 10.1007/s10742-012-0080-3     Document Type: Article
Times cited : (12)

References (28)
  • 1
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin, P.C., Grootendorst, P., Anderson, G.M.: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat. Med. 26, 734-753 (2007)
    • (2007) Stat. Med. , vol.26 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 2
    • 0013798871 scopus 로고
    • The efficiency of matched samples: An emperical investigation
    • Billewicz, W.: The efficiency of matched samples: an emperical investigation. Biometrics 21, 623-643 (1965)
    • (1965) Biometrics , vol.21 , pp. 623-643
    • Billewicz, W.1
  • 4
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190-1208 (1995)
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 1190-1208
    • Byrd, R.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 5
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran, W.G.: The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24, 295-313 (1968)
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 6
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group
    • D'Agostino, R. Jr.: Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group. Stat. Med. 17, 2265-2281 (1998)
    • (1998) Stat. Med. , vol.17 , pp. 2265-2281
    • D'Agostino Jr., R.1
  • 7
    • 0036102924 scopus 로고    scopus 로고
    • Propensity score-matching methods for nonexperimental causal studies
    • Dehejia, R.H., Wahba, S.: Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 84, 151-161 (2002)
    • (2002) Rev. Econ. Stat. , vol.84 , pp. 151-161
    • Dehejia, R.H.1    Wahba, S.2
  • 9
    • 57849163767 scopus 로고    scopus 로고
    • Linear versus logistic regression when the dependent variable is a dichotomy
    • Hellevik, O.: Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quant. 43, 59-74 (2008)
    • (2008) Qual. Quant. , vol.43 , pp. 59-74
    • Hellevik, O.1
  • 10
    • 44649182793 scopus 로고    scopus 로고
    • Discussion of research using propensity-score matching: Comments on a critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin
    • Hill, J.: Discussion of research using propensity-score matching: comments on 'a critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin. Stat. Med. 27, 2055-2061 (2008)
    • (2008) Stat. Med. , vol.27 , pp. 2055-2061
    • Hill, J.1
  • 11
    • 13644264775 scopus 로고    scopus 로고
    • Application of a propensity score approach for risk adjustment in profiling multiple physician groups on asthma care
    • Huang, I., Frangakis, C., Dominici, F., Diette, G., Wu, A.: Application of a propensity score approach for risk adjustment in profiling multiple physician groups on asthma care. Health Serv. Res. 40, 253-278 (2005)
    • (2005) Health Serv. Res. , vol.40 , pp. 253-278
    • Huang, I.1    Frangakis, C.2    Dominici, F.3    Diette, G.4    Wu, A.5
  • 12
    • 1542334708 scopus 로고    scopus 로고
    • Propensity score modeling strategies for the causal analysis of observational data
    • Hullsiek, K.H., Louis, T.A.: Propensity score modeling strategies for the causal analysis of observational data. Biostatistics 2, 179-193 (2002)
    • (2002) Biostatistics , vol.2 , pp. 179-193
    • Hullsiek, K.H.1    Louis, T.A.2
  • 13
    • 8644254410 scopus 로고    scopus 로고
    • Robust likelihood-based analysis of multivariate data with missing values
    • Little, R., An, H.: Robust likelihood-based analysis of multivariate data with missing values. Stat. Sin. 14, 949-968 (2004)
    • (2004) Stat. Sin. , vol.14 , pp. 949-968
    • Little, R.1    An, H.2
  • 15
    • 84855199947 scopus 로고    scopus 로고
    • R Development Core Team: R: R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0 (2010)
    • (2010) A Language and Environment for Statistical Computing
  • 16
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55 (1983)
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 17
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P.R., Rubin, D.B.: Reducing bias in observational studies using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516-524 (1984)
    • (1984) J. Am. Stat. Assoc. , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 18
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum, P.R., Rubin, D.B.: Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 39, 33-38 (1985)
    • (1985) Am. Stat. , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 19
    • 0026354283 scopus 로고
    • Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism
    • Rubin, D.B.: Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics 47, 1213-1234 (1991)
    • (1991) Biometrics , vol.47 , pp. 1213-1234
    • Rubin, D.B.1
  • 20
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin, D.: Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv. Outcomes Res. Methodol. 2, 169-188 (2001)
    • (2001) Health Serv. Outcomes Res. Methodol. , vol.2 , pp. 169-188
    • Rubin, D.1
  • 21
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
    • Rubin, D.: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat. Med. 26, 20 (2007)
    • (2007) Stat. Med. , vol.26 , pp. 20
    • Rubin, D.1
  • 22
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
    • Shah, B., Laupacis, A., Hux, J., Austin, P.: Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J. Clin. Epidemiol. 58, 550-559 (2005)
    • (2005) J. Clin. Epidemiol. , vol.58 , pp. 550-559
    • Shah, B.1    Laupacis, A.2    Hux, J.3    Austin, P.4
  • 23
    • 0025968778 scopus 로고
    • On estimating efficacy from clinical trials
    • Sommer, A., Zeger, S.L.: On estimating efficacy from clinical trials. Stat. Med. 10, 45-52 (1991)
    • (1991) Stat. Med. , vol.10 , pp. 45-52
    • Sommer, A.1    Zeger, S.L.2
  • 24
    • 0038380745 scopus 로고    scopus 로고
    • A bootstrap confidence interval procedure for the treatment effect using propensity score subclassification
    • Tu, W., Zhou, X.: A bootstrap confidence interval procedure for the treatment effect using propensity score subclassification. Health Serv. Outcomes Res. Methodol. 3, 135-147 (2002)
    • (2002) Health Serv. Outcomes Res. Methodol. , vol.3 , pp. 135-147
    • Tu, W.1    Zhou, X.2
  • 25
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modeling propensity scores in medical research: A systematic literature review
    • Weitzen, S., Lapane, K., Toledano, A., Hume, A., Mor, V.: Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol. Drug Saf. 13, 841-853 (2004)
    • (2004) Pharmacoepidemiol. Drug Saf. , vol.13 , pp. 841-853
    • Weitzen, S.1    Lapane, K.2    Toledano, A.3    Hume, A.4    Mor, V.5
  • 26
    • 50449104524 scopus 로고    scopus 로고
    • Estimation of propensity scores using generalized additive models
    • Woo, M., Reiter, J., Karr, A.: Estimation of propensity scores using generalized additive models. Stat. Med. 27, 3805-3816 (2008)
    • (2008) Stat. Med. , vol.27 , pp. 3805-3816
    • Woo, M.1    Reiter, J.2    Karr, A.3
  • 27
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood, S.: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673-687 (2004)
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 673-687
    • Wood, S.1
  • 28
    • 0141576514 scopus 로고    scopus 로고
    • Thin-plate regression splines
    • Wood, S.N.: Thin-plate regression splines. J. R. Stat. Soc. B 65, 95-114 (2003)
    • (2003) J. R. Stat. Soc. B , vol.65 , pp. 95-114
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.