메뉴 건너뛰기




Volumn 63, Issue 8, 2010, Pages 826-833

Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression

Author keywords

Classification and regression trees (CART); Logistic regression; Neural networks; Propensity scores; Recursive partitioning algorithms; Review

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DATA ANALYSIS; DECISION TREE; EPIDEMIOLOGICAL DATA; LOGISTIC REGRESSION ANALYSIS; PRIORITY JOURNAL; REVIEW; SUPPORT VECTOR MACHINE; ARTIFICIAL INTELLIGENCE; HUMAN; PROPENSITY SCORE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 77953607621     PISSN: 08954356     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2009.11.020     Document Type: Review
Times cited : (428)

References (47)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum P.R., and Rubin D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 70 (1983) 41-55
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda M.S., Boston R., Farrar J.T., and Strom B.L. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 158 (2003) 280-287
    • (2003) Am J Epidemiol , vol.158 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 3
    • 0033567210 scopus 로고    scopus 로고
    • Invited commentary: propensity scores
    • Joffe M.M., and Rosenbaum P.R. Invited commentary: propensity scores. Am J Epidemiol 150 (1999) 327-333
    • (1999) Am J Epidemiol , vol.150 , pp. 327-333
    • Joffe, M.M.1    Rosenbaum, P.R.2
  • 4
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino Jr. R.B. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17 (1998) 2265-2281
    • (1998) Stat Med , vol.17 , pp. 2265-2281
    • D'Agostino Jr., R.B.1
  • 5
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modeling propensity scores in medical research: a systematic literature review
    • Weitzen S., Lapane K.L., Toledano A.Y., Hume A.L., and Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 13 (2004) 841-853
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , pp. 841-853
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3    Hume, A.L.4    Mor, V.5
  • 6
    • 0023849378 scopus 로고
    • Asymmetric stratification. An outline for an efficient method for controlling confounding in cohort studies
    • Cook E.F., and Goldman L. Asymmetric stratification. An outline for an efficient method for controlling confounding in cohort studies. Am J Epidemiol 127 (1988) 626-639
    • (1988) Am J Epidemiol , vol.127 , pp. 626-639
    • Cook, E.F.1    Goldman, L.2
  • 7
    • 33645210305 scopus 로고    scopus 로고
    • Indications for propensity scores and review of their use in pharmacoepidemiology
    • Glynn R.J., Schneeweiss S., and Sturmer T. Indications for propensity scores and review of their use in pharmacoepidemiology. Basic Clin Pharmacol Toxicol 98 (2006) 253-259
    • (2006) Basic Clin Pharmacol Toxicol , vol.98 , pp. 253-259
    • Glynn, R.J.1    Schneeweiss, S.2    Sturmer, T.3
  • 8
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey D.F., Ridgeway G., and Morral A.R. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods 9 (2004) 403-425
    • (2004) Psychol Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 14
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman L. Statistical modeling: the two cultures. Stat Sci 16 (2001) 199-231
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 16
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron A.R. Approximation and estimation bounds for artificial neural networks. Machine Learning 14 (1994) 115-133
    • (1994) Machine Learning , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 17
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • Mhaskar H. Neural networks for optimal approximation of smooth and analytic functions. Neural Comput 8 (1996) 164-177
    • (1996) Neural Comput , vol.8 , pp. 164-177
    • Mhaskar, H.1
  • 18
    • 47649099213 scopus 로고    scopus 로고
    • Available at Subsection features; accessed September 2, 2009
    • ™. Available at (2008). http://www.sas.com/technologies/analytics/datamining/miner/ Subsection features; accessed September 2, 2009
    • (2008)
    • SAS1
  • 19
    • 84925569734 scopus 로고    scopus 로고
    • Available at (Accessed September 9, 2009)
    • Nagy A. Package: neural. Available at (2009). http://cran.r-project.org/web/packages/neural/neural.pdf (Accessed September 9, 2009)
    • (2009) Package: neural
    • Nagy, A.1
  • 21
    • 33746217030 scopus 로고    scopus 로고
    • Propensity score for the analysis of observational data: an introduction and an illustrative example
    • Cavuto S., Bravi F., Grassi M., and Apolone G. Propensity score for the analysis of observational data: an introduction and an illustrative example. Drug Dev Res 67 (2006) 208-216
    • (2006) Drug Dev Res , vol.67 , pp. 208-216
    • Cavuto, S.1    Bravi, F.2    Grassi, M.3    Apolone, G.4
  • 22
    • 70349622243 scopus 로고    scopus 로고
    • A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population
    • du Jardin P., Ponsaille J., Alunni-Perret V., and Quatrehomme G. A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int 192 (2009) 127.e1-127.e6
    • (2009) Forensic Sci Int , vol.192
    • du Jardin, P.1    Ponsaille, J.2    Alunni-Perret, V.3    Quatrehomme, G.4
  • 23
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • Eftekhar B., Mohammad K., Ardebili H.E., Ghodsi M., and Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak 5 (2005) 3
    • (2005) BMC Med Inform Decis Mak , vol.5 , pp. 3
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.E.3    Ghodsi, M.4    Ketabchi, E.5
  • 24
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2 (1998) 121-167
    • (1998) Data Mining Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 25
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J., and Hastie T. Kernel logistic regression and the import vector machine. J Comput Graph Stat 14 (2005) 185-205
    • (2005) J Comput Graph Stat , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 26
    • 54249163198 scopus 로고    scopus 로고
    • Available at Accessed September 9, 2009
    • Meyer D. Support vector machines. Available at (2009). http://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf Accessed September 9, 2009
    • (2009) Support vector machines
    • Meyer, D.1
  • 27
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical Report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, UK
    • Gunn SR. Support vector machines for classification and regression. Technical Report, ISIS Research Group, Department of Electronics and Computer Science, University of Southampton, UK. 1998.
    • (1998)
    • Gunn, S.R.1
  • 28
    • 0032594950 scopus 로고    scopus 로고
    • Support vector machines for spam categorization
    • Drucker H., Wu D., and Vapnik V.N. Support vector machines for spam categorization. IEEE Trans Neural Netw 10 (1999) 1048-1054
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 1048-1054
    • Drucker, H.1    Wu, D.2    Vapnik, V.N.3
  • 29
    • 0042345041 scopus 로고    scopus 로고
    • Classification and subtype prediction of adult soft tissue sarcoma by functional genomics
    • Segal N.H., Pavlidis P., Antonescu C.R., Maki R.G., Noble W.S., DeSantis D., et al. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163 (2003) 691-700
    • (2003) Am J Pathol , vol.163 , pp. 691-700
    • Segal, N.H.1    Pavlidis, P.2    Antonescu, C.R.3    Maki, R.G.4    Noble, W.S.5    DeSantis, D.6
  • 30
    • 0037797247 scopus 로고    scopus 로고
    • Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling
    • Segal N.H., Pavlidis P., Noble W.S., Antonescu C.R., Viale A., Wesley U.V., et al. Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. J Clin Oncol 21 (2003) 1775-1781
    • (2003) J Clin Oncol , vol.21 , pp. 1775-1781
    • Segal, N.H.1    Pavlidis, P.2    Noble, W.S.3    Antonescu, C.R.4    Viale, A.5    Wesley, U.V.6
  • 31
    • 60749128663 scopus 로고    scopus 로고
    • COBEpro: a novel system for predicting continuous B-cell epitopes
    • Sweredoski M.J., and Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22 (2009) 113-120
    • (2009) Protein Eng Des Sel , vol.22 , pp. 113-120
    • Sweredoski, M.J.1    Baldi, P.2
  • 33
    • 85039558618 scopus 로고    scopus 로고
    • Available at (Accessed September 9, 2009)
    • Therneau T.M., and Atkinson B. Package: rpart. Available at (2009). http://cran.r-project.org/web/packages/rpart/rpart.pdf (Accessed September 9, 2009)
    • (2009) Package: rpart
    • Therneau, T.M.1    Atkinson, B.2
  • 36
    • 18544413070 scopus 로고    scopus 로고
    • Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia. Italian Cooperative Study Group on Myeloid with Myeloid Metaplasia
    • Barosi G., Ambrosetti A., Centra A., Falcone A., Finelli C., Foa P., et al. Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia. Italian Cooperative Study Group on Myeloid with Myeloid Metaplasia. Blood 91 (1998) 3630-3636
    • (1998) Blood , vol.91 , pp. 3630-3636
    • Barosi, G.1    Ambrosetti, A.2    Centra, A.3    Falcone, A.4    Finelli, C.5    Foa, P.6
  • 37
    • 0037806811 scopus 로고    scopus 로고
    • The Boosting approach to machine learning: An overview
    • Hansen DD, Holmes MH, Mallick CC, Yu B, editors:, New York: Springer;
    • Schapire RE. The Boosting approach to machine learning: an overview. In: Hansen DD, Holmes MH, Mallick CC, Yu B, editors: Nonlinear Estimation and Classification. New York: Springer; 2003.
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.E.1
  • 38
    • 84925567202 scopus 로고    scopus 로고
    • Breiman L, Cutler A, Liaw A, Wiener M. Breiman and Cutler's random forests for classification and regression, v. 4.5-22: 2007; Available at. http://cran.r-project.org/web/packages/randomForest/index.html. (Accessed December 18, 2007), 2007.
    • Breiman L, Cutler A, Liaw A, Wiener M. Breiman and Cutler's random forests for classification and regression, v. 4.5-22: 2007; Available at. http://cran.r-project.org/web/packages/randomForest/index.html. (Accessed December 18, 2007), 2007.
  • 40
    • 33646517317 scopus 로고    scopus 로고
    • Boosted regression (boosting): an introductory tutorial and a Stata plugin
    • Schonlau M. Boosted regression (boosting): an introductory tutorial and a Stata plugin. Stata J 5 (2005) 330-354
    • (2005) Stata J , vol.5 , pp. 330-354
    • Schonlau, M.1
  • 41
    • 33748347921 scopus 로고    scopus 로고
    • Marijuana use and depression among adults: testing for causal associations
    • Harder V.S., Morral A.R., and Arkes J. Marijuana use and depression among adults: testing for causal associations. Addiction 101 (2006) 1463-1472
    • (2006) Addiction , vol.101 , pp. 1463-1472
    • Harder, V.S.1    Morral, A.R.2    Arkes, J.3
  • 42
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • Hernan M.A., Brumback B., and Robins J.M. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11 (2000) 561-570
    • (2000) Epidemiology , vol.11 , pp. 561-570
    • Hernan, M.A.1    Brumback, B.2    Robins, J.M.3
  • 43
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins J.M., Hernán M.A., and Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 11 (2000) 550-560
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 44
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H., and Robins J.M. Doubly robust estimation in missing data and causal inference models. Biometrics 61 (2005) 962-973
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 45
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
    • Lunceford J.K., and Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 23 (2004) 2937-2960
    • (2004) Stat Med , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 46
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee B.K., Lessler J., and Stuart E.A. Improving propensity score weighting using machine learning. Stat Med 29 3 (2010) 337-346
    • (2010) Stat Med , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 47
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: a methodology review
    • Dreiseitl S., and Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35 (2002) 352-359
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.