메뉴 건너뛰기




Volumn 32, Issue 16, 2013, Pages 2837-2849

The performance of different propensity score methods for estimating marginal hazard ratios

Author keywords

Inverse probability of treatment weighting (IPTW); Monte Carlo simulations; Observational study; Propensity score; Survival analysis; Time to event outcomes

Indexed keywords

ARTICLE; ERROR; HAZARD RATIO; INTERMETHOD COMPARISON; INVERSE PROBABILITY OF TREATMENT WEIGHTING; MONTE CARLO METHOD; NORMAL DISTRIBUTION; PROPENSITY SCORE; PROPORTIONAL HAZARDS MODEL; STATISTICAL PARAMETERS; SURVIVAL;

EID: 84879167098     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5705     Document Type: Article
Times cited : (670)

References (37)
  • 2
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 4
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037-2049.
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2037-2049
    • Austin, P.C.1
  • 5
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals
    • Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142-153.
    • (2010) Journal of Clinical Epidemiology , vol.63 , Issue.2 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3    Juurlink, D.N.4    Stanbrook, M.B.5
  • 6
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
    • Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754-768.
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.3    Anderson, G.M.4
  • 7
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26(16):3078-3094.
    • (2007) Statistics in Medicine , vol.26 , Issue.16 , pp. 3078-3094
    • Austin, P.C.1
  • 8
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating relative risks
    • Austin PC. The performance of different propensity-score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61(6):537-545.
    • (2008) Journal of Clinical Epidemiology , vol.61 , Issue.6 , pp. 537-545
    • Austin, P.C.1
  • 9
    • 77956314484 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies
    • Austin PC. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Statistics in Medicine 2010; 29(20):2137-2148.
    • (2010) Statistics in Medicine , vol.29 , Issue.20 , pp. 2137-2148
    • Austin, P.C.1
  • 10
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. American Journal of Epidemiology 1987; 125(5):761-768.
    • (1987) American Journal of Epidemiology , vol.125 , Issue.5 , pp. 761-768
    • Greenland, S.1
  • 11
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 1984; 7:431-444.
    • (1984) Biometrika , vol.7 , pp. 431-444
    • Gail, M.H.1    Wieand, S.2    Piantadosi, S.3
  • 12
    • 33645217214 scopus 로고    scopus 로고
    • Propensity score
    • In, Armitage P, Colton T (eds). John Wiley & Sons: Boston
    • Rosenbaum PR. Propensity score. In Encyclopedia of Biostatistics, Armitage P, Colton T (eds). John Wiley & Sons: Boston, 2005; 4267-4272.
    • (2005) Encyclopedia of Biostatistics , pp. 4267-4272
    • Rosenbaum, P.R.1
  • 13
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician 1985; 39:33-38.
    • (1985) The American Statistician , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 14
    • 77958600686 scopus 로고    scopus 로고
    • Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
    • Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics 2010; 10:150-161.
    • (2010) Pharmaceutical Statistics , vol.10 , pp. 150-161
    • Austin, P.C.1
  • 17
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 18
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24(2):295-313.
    • (1968) Biometrics , vol.24 , Issue.2 , pp. 295-313
    • Cochran, W.G.1
  • 19
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960.
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 20
    • 54049137609 scopus 로고    scopus 로고
    • A diagnostic routine for the detection of consequential heterogeneity of causal effects
    • Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231-281.
    • (2008) Sociological Methodology , vol.38 , pp. 231-281
    • Morgan, S.L.1    Todd, J.L.2
  • 21
    • 8744315994 scopus 로고    scopus 로고
    • Model selection, confounder control, and marginal structural models: Review and new applications
    • Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: Review and new applications. The American Statistician 2004; 58:272-279.
    • (2004) The American Statistician , vol.58 , pp. 272-279
    • Joffe, M.M.1    Ten Have, T.R.2    Feldman, H.I.3    Kimmel, S.E.4
  • 22
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 23
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • DOI: 10.1080/03610910903528301.
    • Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics - Simulation and Computation 2010; 39:563-577. DOI: 10.1080/03610910903528301.
    • (2010) Communications in Statistics - Simulation and Computation , vol.39 , pp. 563-577
    • Austin, P.C.1
  • 24
    • 47749131861 scopus 로고    scopus 로고
    • The performance of two data-generation processes for data with specified marginal treatment odds ratios
    • Austin PC, Stafford J. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Communications in Statistics - Simulation and Computation 2008; 37:1039-1051.
    • (2008) Communications in Statistics - Simulation and Computation , vol.37 , pp. 1039-1051
    • Austin, P.C.1    Stafford, J.2
  • 25
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734-753.
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 26
    • 0002512643 scopus 로고
    • A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data
    • Neuhaus JM, Kalbfleish JD, Hauck WW. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review 1991; 59(1):25-35.
    • (1991) International Statistical Review , vol.59 , Issue.1 , pp. 25-35
    • Neuhaus, J.M.1    Kalbfleish, J.D.2    Hauck, W.W.3
  • 27
    • 0037108235 scopus 로고    scopus 로고
    • Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems
    • Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Statistics in Medicine 2002; 21(19):2917-2930.
    • (2002) Statistics in Medicine , vol.21 , Issue.19 , pp. 2917-2930
    • Pocock, S.J.1    Assmann, S.E.2    Enos, L.E.3    Kasten, L.E.4
  • 28
    • 67249097811 scopus 로고    scopus 로고
    • Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Article 13. DOI: 10.2202/1557-4679.1146.
    • Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5: Article 13. DOI: 10.2202/1557-4679.1146.
    • (2009) International Journal of Biostatistics , vol.5
    • Austin, P.C.1
  • 30
    • 27144479267 scopus 로고    scopus 로고
    • Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data
    • Xie J, Liu C. Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Statistics in Medicine 2005; 24(20):3089-3110.
    • (2005) Statistics in Medicine , vol.24 , Issue.20 , pp. 3089-3110
    • Xie, J.1    Liu, C.2
  • 31
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337-346.
    • (2010) Statistics in Medicine , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 33
    • 77958523826 scopus 로고    scopus 로고
    • Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score
    • Austin PC. Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. American Journal of Epidemiology 2010; 172(9):1092-1097.
    • (2010) American Journal of Epidemiology , vol.172 , Issue.9 , pp. 1092-1097
    • Austin, P.C.1
  • 34
    • 60849116685 scopus 로고    scopus 로고
    • Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations
    • Austin PC. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 2009; 51(1):171-184.
    • (2009) Biometrical Journal , vol.51 , Issue.1 , pp. 171-184
    • Austin, P.C.1
  • 36
    • 79955639125 scopus 로고    scopus 로고
    • Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples
    • Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292-1301.
    • (2011) Statistics in Medicine , vol.30 , Issue.11 , pp. 1292-1301
    • Austin, P.C.1
  • 37
    • 84861097401 scopus 로고    scopus 로고
    • Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study
    • DOI: 10.1002/pst.537.
    • Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222-229, DOI: 10.1002/pst.537.
    • (2012) Pharmaceutical Statistics , vol.11 , Issue.3 , pp. 222-229
    • Gayat, E.1    Resche-Rigon, M.2    Mary, J.Y.3    Porcher, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.