메뉴 건너뛰기




Volumn 29, Issue 3, 2010, Pages 337-346

Improving propensity score weighting using machine learning

Author keywords

Boosting; CART; Data mining; Ensemble methods; Machine learning; Propensity score; Simulation; Weighting

Indexed keywords

ARTICLE; CLASSIFICATION AND REGRESSION TREES; CONFIDENCE INTERVAL; CONTROLLED STUDY; COVARIANCE; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; PROPENSITY SCORE; RANDOM FOREST; SAMPLE SIZE; SCORING SYSTEM; SIMULATION;

EID: 74749097452     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3782     Document Type: Article
Times cited : (710)

References (37)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino Jr RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 1998; 17(19):2265-2281.
    • (1998) Statistics in Medicine , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino Jr, R.B.1
  • 3
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano K, Imbens G. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Services and Outcomes Research Methodology 2001; 2:259-278.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.2
  • 4
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang J, Schafer J. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 2007; 22:523-580.
    • (2007) Statistical Science , vol.22 , pp. 523-580
    • Kang, J.1    Schafer, J.2
  • 5
    • 49749137541 scopus 로고    scopus 로고
    • Comment: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
    • Ridgeway G, McCaffrey DF. Comment: demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 2007; 22(4):540-543.
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 540-543
    • Ridgeway, G.1    McCaffrey, D.F.2
  • 6
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiology and Drug Safety 2004; 13(12):855- 857.
    • (2004) Pharmacoepidemiology and Drug Safety , vol.13 , Issue.12 , pp. 855-857
    • Rubin, D.B.1
  • 7
    • 0027717184 scopus 로고
    • Effects of misspecification of the propensity score on estimators of treatment effect
    • Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics 1993; 49:1231-1236.
    • (1993) Biometrics , vol.49 , pp. 1231-1236
    • Drake, C.1
  • 8
    • 33847209581 scopus 로고    scopus 로고
    • Paper 2005032701, Department of Statistics Papers, 2005. Available from
    • Berk R. An introduction to ensemble methods for data analysis. Paper 2005032701, Department of Statistics Papers, 2005. Available from: http://repositories.cdlib.org/uclastat/papers/2005032701.
    • An introduction to ensemble methods for data analysis
    • Berk, R.1
  • 9
    • 74749091997 scopus 로고    scopus 로고
    • Mitchell TM. Machine Learning (1st edn). McGraw-Hill Science/Engineering/Mathematics: U.S.A., 1997.
    • Mitchell TM. Machine Learning (1st edn). McGraw-Hill Science/Engineering/Mathematics: U.S.A., 1997.
  • 10
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L. Statistical modeling: the two cultures. Statistical Science 2001; 16:199-215.
    • (2001) Statistical Science , vol.16 , pp. 199-215
    • Breiman, L.1
  • 12
    • 33748347921 scopus 로고    scopus 로고
    • Marijuana use and depression among adults: Testing for causal associations
    • Harder VS, Morral AR, Arkes J. Marijuana use and depression among adults: testing for causal associations. Addiction 2006; 101(10):1463- 1472.
    • (2006) Addiction , vol.101 , Issue.10 , pp. 1463-1472
    • Harder, V.S.1    Morral, A.R.2    Arkes, J.3
  • 13
    • 51749097176 scopus 로고    scopus 로고
    • Adolescent cannabis problems and young adult depression: Male-female stratified propensity score analyses
    • Harder VS, Stuart EA, Anthony JC. Adolescent cannabis problems and young adult depression: male-female stratified propensity score analyses. American Journal of Epidemiology 2008; 168(6):592-601.
    • (2008) American Journal of Epidemiology , vol.168 , Issue.6 , pp. 592-601
    • Harder, V.S.1    Stuart, E.A.2    Anthony, J.C.3
  • 14
    • 28444464482 scopus 로고    scopus 로고
    • Propensity scores: An introduction and experimental test
    • Luellen JK, Shadish WR, Clark MH. Propensity scores: an introduction and experimental test. Evaluation Review 2005; 29(6):530-558.
    • (2005) Evaluation Review , vol.29 , Issue.6 , pp. 530-558
    • Luellen, J.K.1    Shadish, W.R.2    Clark, M.H.3
  • 15
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
    • (2004) Psychological Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 17
    • 74749107561 scopus 로고    scopus 로고
    • Propensity score estimation and classification methods: Alternatives to logistic regression
    • accepted
    • Westreich D, Lessler J, Jonsson Funk M. Propensity score estimation and classification methods: alternatives to logistic regression. Journal of Clinical Epidemiology 2009; accepted.
    • (2009) Journal of Clinical Epidemiology
    • Westreich, D.1    Lessler, J.2    Jonsson Funk, M.3
  • 18
    • 0035023626 scopus 로고    scopus 로고
    • The use of classification and regression trees in clinical epidemiology
    • Marshall RJ. The use of classification and regression trees in clinical epidemiology. Journal of Clinical Epidemiology 2001; 54(6):603- 609.
    • (2001) Journal of Clinical Epidemiology , vol.54 , Issue.6 , pp. 603-609
    • Marshall, R.J.1
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996; 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
  • 23
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • DOI: 10.1111/j.1365-2656.2008. 01390
    • Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology 2008; DOI: 10.1111/j.1365-2656.2008. 01390.
    • (2008) Journal of Animal Ecology
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 25
    • 74749109407 scopus 로고    scopus 로고
    • Therneau TM, Atkinson B. rpart: Recursive Partitioning. R port by Brian Ripley. R Package Version 3.1-41, 2008
    • Therneau TM, Atkinson B. rpart: Recursive Partitioning. R port by Brian Ripley. R Package Version 3.1-41, 2008.
  • 26
    • 74749092148 scopus 로고    scopus 로고
    • Peters A, Hothorn T. ipred: improved predictors. R Package Version 0.8-6, 2008
    • Peters A, Hothorn T. ipred: improved predictors. R Package Version 0.8-6, 2008.
  • 27
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A, Wiener M. Classification and regression by random forest. R News 2002; 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 28
    • 74749105584 scopus 로고    scopus 로고
    • Ridgeway G, McCaffrey DF, Morral AR. Twang: Toolkit for Weighting and Analysis of Nonequivalent Groups. R Package Version 1.0-1, 2006
    • Ridgeway G, McCaffrey DF, Morral AR. Twang: Toolkit for Weighting and Analysis of Nonequivalent Groups. R Package Version 1.0-1, 2006.
  • 29
    • 31344433620 scopus 로고    scopus 로고
    • Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect
    • Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. American Journal of Epidemiology 2006; 163(3):262-270.
    • (2006) American Journal of Epidemiology , vol.163 , Issue.3 , pp. 262-270
    • Kurth, T.1    Walker, A.M.2    Glynn, R.J.3    Chan, K.A.4    Gaziano, J.M.5    Berger, K.6    Robins, J.M.7
  • 30
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960.
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 31
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics 2005; 61:962-973.
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 32
    • 74749106446 scopus 로고    scopus 로고
    • Lumley T. Survey: analysis of complex survey samples. R Package Version 3.9-1, 2008
    • Lumley T. Survey: analysis of complex survey samples. R Package Version 3.9-1, 2008.
  • 33
    • 43749098314 scopus 로고    scopus 로고
    • Best practices in quasi-experimental designs: Matching methods for causal inference
    • Sage Publications: New York
    • Stuart EA, Rubin DB. Best practices in quasi-experimental designs: matching methods for causal inference. Best Practices in Quantitative Methods. Sage Publications: New York, 2007; 155-176.
    • (2007) Best Practices in Quantitative Methods , pp. 155-176
    • Stuart, E.A.1    Rubin, D.B.2
  • 34
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • Rubin DB, Thomas N. Combining propensity score matching with additional adjustments for prognostic covariates. Journal of the American Statistical Association 2000; 95(450):573-585.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.450 , pp. 573-585
    • Rubin, D.B.1    Thomas, N.2
  • 35
    • 52049087339 scopus 로고    scopus 로고
    • Matching with multiple control groups and adjusting for group differences
    • Stuart EA, Rubin DB. Matching with multiple control groups and adjusting for group differences. Journal of Educational and Behavioral Statistics 2008; 33(3):279-306.
    • (2008) Journal of Educational and Behavioral Statistics , vol.33 , Issue.3 , pp. 279-306
    • Stuart, E.A.1    Rubin, D.B.2
  • 36
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 2007; 15:199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.E.1    Imai, K.2    King, G.3    Stuart, E.A.4
  • 37
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology 2001; 2(3-4):169-188.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , Issue.3-4 , pp. 169-188
    • Rubin, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.