메뉴 건너뛰기




Volumn 182, Issue 7, 2015, Pages 651-659

Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses

Author keywords

bias; confounding factors; epidemiologic methods; lasso; propensity score; simulation; variable selection

Indexed keywords

ANTICONVULSIVE AGENT; NONSTEROID ANTIINFLAMMATORY AGENT;

EID: 84943555084     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwv108     Document Type: Article
Times cited : (53)

References (39)
  • 1
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • Hernán MA, Hernández-Díaz S, Werler MM, et al. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002; 155(2): 176-184
    • (2002) Am J Epidemiol , vol.155 , Issue.2 , pp. 176-184
    • Ma, H.1    Hernández-Díaz, S.2    Werler, M.M.3
  • 2
    • 77953632279 scopus 로고    scopus 로고
    • Confounding control in healthcare database research: Challenges and potential approaches
    • suppl
    • Brookhart MA, Stürmer T, Glynn RJ, et al. Confounding control in healthcare database research: challenges and potential approaches. Med Care. 2010; 48(6 suppl): S114-S120
    • (2010) Med Care , vol.48 , Issue.6 , pp. S114-S120
    • Ma, B.1    Stürmer, T.2    Glynn, R.J.3
  • 3
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007; 26(4): 734-753
    • (2007) Stat Med , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 4
    • 33645236260 scopus 로고    scopus 로고
    • Variable selection for propensity score models
    • Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol. 2006; 163(12): 1149-1156
    • (2006) Am J Epidemiol , vol.163 , Issue.12 , pp. 1149-1156
    • Ma, B.1    Schneeweiss, S.2    Rothman, K.J.3
  • 5
    • 1842533937 scopus 로고    scopus 로고
    • Functional restriction and efficiency in causal inference
    • Hahn J. Functional restriction and efficiency in causal inference. Rev Econ Stat. 2004; 86(1): 73-76
    • (2004) Rev Econ Stat , vol.86 , Issue.1 , pp. 73-76
    • Hahn, J.1
  • 6
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • pt2
    • Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997; 127(8 pt 2): 757-763
    • (1997) Ann Intern Med , vol.127 , Issue.8 , pp. 757-763
    • Rubin, D.B.1
  • 7
    • 82055193049 scopus 로고    scopus 로고
    • Causal diagrams for treatment effect estimation with application to efficient covariate selection
    • White H, Lu X. Causal diagrams for treatment effect estimation with application to efficient covariate selection. Rev Econ Stat. 2011; 93(4): 1453-1459
    • (2011) Rev Econ Stat , vol.93 , Issue.4 , pp. 1453-1459
    • White, H.1    Lu, X.2
  • 8
    • 80053137535 scopus 로고    scopus 로고
    • On a class of bias-Amplifying variables that endanger effect estimates
    • Grunwald P, ed Corvallis, OR: Association for Uncertainty in Artificial Intelligence
    • Pearl J. On a class of bias-Amplifying variables that endanger effect estimates. In: Grunwald P, ed. Proceedings of Uncertainty in Artificial Intelligence. Corvallis, OR: Association for Uncertainty in Artificial Intelligence; 2010: 425-432
    • (2010) Proceedings of Uncertainty in Artificial Intelligence , pp. 425-432
    • Pearl, J.1
  • 9
    • 80053281276 scopus 로고    scopus 로고
    • Effects of adjusting for instrumental variables on bias and precision of effect estimates
    • Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol. 2011; 174(11): 1213-1222
    • (2011) Am J Epidemiol , vol.174 , Issue.11 , pp. 1213-1222
    • Myers, J.A.1    Rassen, J.A.2    Gagne, J.J.3
  • 10
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: An epidemiologist's dream?
    • Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream?. Epidemiology. 2006; 17(4): 360-372
    • (2006) Epidemiology , vol.17 , Issue.4 , pp. 360-372
    • Ma, H.1    Robins, J.M.2
  • 11
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data.
    • Schneeweiss S, Rassen JA, Glynn RJ, et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009; 20(4): 512-522
    • (2009) Epidemiology , vol.20 , Issue.4 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3
  • 12
    • 79958845225 scopus 로고    scopus 로고
    • Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples
    • Rassen JA, Glynn RJ, Brookhart MA, et al. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011; 173(12): 1404-1413
    • (2011) Am J Epidemiol , vol.173 , Issue.12 , pp. 1404-1413
    • Rassen, J.A.1    Glynn, R.J.2    Ma, B.3
  • 13
    • 84890553945 scopus 로고    scopus 로고
    • Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases
    • Franklin JM, Schneeweiss S, Polinski JM, et al. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Comput Stat Data Anal. 2014; 72: 219-226
    • (2014) Comput Stat Data Anal , vol.72 , pp. 219-226
    • Franklin, J.M.1    Schneeweiss, S.2    Polinski, J.M.3
  • 14
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: Variable selection versus shrinkage in the control of multiple confounders
    • Greenland S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol. 2008; 167(5): 523-529
    • (2008) Am J Epidemiol , vol.167 , Issue.5 , pp. 523-529
    • Greenland, S.1
  • 16
    • 84860599298 scopus 로고    scopus 로고
    • Role of disease risk scores in comparative effectiveness research with emerging therapies
    • Glynn RJ, Gagne JJ, Schneeweiss S. Role of disease risk scores in comparative effectiveness research with emerging therapies. Pharmacoepidemiol Drug Saf. 2012; 21(suppl 2): 138-147
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , Issue.SUPPL2 , pp. 138-147
    • Glynn, R.J.1    Gagne, J.J.2    Schneeweiss, S.3
  • 17
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning. 2nd ed. New York
    • Springer
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New York, NY: Springer; 2009
    • (2009) NY
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 18
    • 33750965282 scopus 로고    scopus 로고
    • Simultaneous assessment of short-term gastrointestinal benefits and cardiovascular risks of selective cyclooxygenase 2 inhibitors and nonselective nonsteroidal antiinflammatory drugs: An instrumental variable analysis
    • Schneeweiss S, Solomon DH, Wang PS, et al. Simultaneous assessment of short-term gastrointestinal benefits and cardiovascular risks of selective cyclooxygenase 2 inhibitors and nonselective nonsteroidal antiinflammatory drugs: an instrumental variable analysis. Arthritis Rheum. 2006; 54(11): 3390-3398
    • (2006) Arthritis Rheum , vol.54 , Issue.11 , pp. 3390-3398
    • Schneeweiss, S.1    Solomon, D.H.2    Wang, P.S.3
  • 19
    • 84894153340 scopus 로고    scopus 로고
    • Studies with many covariates and few outcomes: Selecting covariates and implementing propensity-score-based confounding adjustments
    • Patorno E, Glynn RJ, Hernández-Díaz S, et al. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Epidemiology. 2014; 25(2): 268-278
    • (2014) Epidemiology , vol.25 , Issue.2 , pp. 268-278
    • Patorno, E.1    Glynn, R.J.2    Hernández-Díaz, S.3
  • 20
    • 0013916535 scopus 로고
    • Spurious effects from an extraneous variable
    • Bross ID. Spurious effects from an extraneous variable. J Chronic Dis. 1966; 19(6): 637-647
    • (1966) J Chronic Dis , vol.19 , Issue.6 , pp. 637-647
    • Bross, I.D.1
  • 21
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984; 79(387): 516-524
    • (1984) J Am Stat Assoc , vol.79 , Issue.387 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 22
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med. 2007; 26(16): 3078-3094
    • (2007) Stat Med , vol.26 , Issue.16 , pp. 3078-3094
    • Austin, P.C.1
  • 23
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992; 41(1): 191-201
    • (1992) Appl Stat , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996; 58(1): 267-288
    • (1996) J R Stat Soc ser B Methodol , vol.58 , Issue.1 , pp. 267-267
    • Tibshirani, R.1
  • 25
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc. 1983; 78(382): 316-331
    • (1983) J Am Stat Assoc , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 26
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010; 33(1): 1-22
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 27
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999; 14(1): 29-46
    • (1999) Stat Sci , vol.14 , Issue.1 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 28
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • Hurvich CM, Tsai CL. The impact of model selection on inference in linear regression. Am Stat. 1990; 44(3): 214-217
    • (1990) Am Stat , vol.44 , Issue.3 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.L.2
  • 29
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis
    • Steyerberg EW, Eijkemans MJ, Habbema JDF. Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. J Clin Epidemiol. 1999; 52(10): 935-942
    • (1999) J Clin Epidemiol , vol.52 , Issue.10 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Habbema, J.D.F.3
  • 30
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29(5): 1189-1232
    • (2001) Ann Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 31
    • 84901800622 scopus 로고    scopus 로고
    • Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects
    • Zigler CM, Dominici F. Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects. J Am Stat Assoc. 2014; 109(505): 95-107
    • (2014) J Am Stat Assoc , vol.109 , Issue.505 , pp. 95-107
    • Zigler, C.M.1    Dominici, F.2
  • 32
    • 79953903665 scopus 로고    scopus 로고
    • On model selection and model misspecification in causal inference
    • Vansteelandt S, Bekaert M, Claeskens G. On model selection and model misspecification in causal inference. Stat Methods Med Res. 2012; 21(1): 7-30
    • (2012) Stat Methods Med Res , vol.21 , Issue.1 , pp. 7-30
    • Vansteelandt, S.1    Bekaert, M.2    Claeskens, G.3
  • 33
    • 84866768287 scopus 로고    scopus 로고
    • Bayesian effect estimation accounting for adjustment uncertainty
    • Wang C, Parmigiani G, Dominici F. Bayesian effect estimation accounting for adjustment uncertainty. Biometrics. 2012; 68(3): 661-671
    • (2012) Biometrics , vol.68 , Issue.3 , pp. 661-671
    • Wang, C.1    Parmigiani, G.2    Dominici, F.3
  • 34
    • 50949134553 scopus 로고    scopus 로고
    • Adjustment uncertainty in effect estimation
    • Crainiceanu CM, Dominici F, Parmigiani G. Adjustment uncertainty in effect estimation. Biometrika. 2008; 95(3): 635-651
    • (2008) Biometrika , vol.95 , Issue.3 , pp. 635-651
    • Crainiceanu, C.M.1    Dominici, F.2    Parmigiani, G.3
  • 35
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano K, Imbens GW, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica. 2003; 71(4): 1161-1189
    • (2003) Econometrica , vol.71 , Issue.4 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.W.2    Ridder, G.3
  • 36
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc. 1999; 94(448): 1096-1120
    • (1999) J Am Stat Assoc , vol.94 , Issue.448 , pp. 1096-1120
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 37
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009; 20(4): 488-495
    • (2009) Epidemiology , vol.20 , Issue.4 , pp. 488-495
    • Schisterman, E.F.1    Cole, S.R.2    Platt, R.W.3
  • 38
    • 77956625112 scopus 로고    scopus 로고
    • A basic study design for expedited safety signal evaluation based on electronic health-care data
    • Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic health-care data. Pharmacoepidemiol Drug Saf. 2010; 19(8): 858-868
    • (2010) Pharmacoepidemiol Drug Saf , vol.19 , Issue.8 , pp. 858-868
    • Schneeweiss, S.1
  • 39
    • 84901794133 scopus 로고    scopus 로고
    • Learning from big health care data
    • Schneeweiss S. Learning from big health care data. N Engl J Med. 2014; 370(23): 2161-2163
    • (2014) N Engl J Med , vol.370 , Issue.23 , pp. 2161-2163
    • Schneeweiss, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.