메뉴 건너뛰기




Volumn 12, Issue 3, 2017, Pages 271-277

Macromolecular target prediction by self-organizing feature maps

Author keywords

Chemical biology; deep learning; drug design; machine learning; medicinal chemistry; neural network; off target; phenotypic screening; polypharmacology

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CHEMICAL DATABASE; CHEMICAL STRUCTURE; DRUG DESIGN; DRUG REPOSITIONING; DRUG SCREENING; IN VITRO STUDY; MACHINE LEARNING; MACROMOLECULE; PHENOTYPE; PREDICTION; PRIORITY JOURNAL; REVIEW; SELF ORGANIZING MAP; ALGORITHM; COMPUTER SIMULATION; DRUG DEVELOPMENT; HUMAN; METABOLISM; MOLECULARLY TARGETED THERAPY; PROCEDURES;

EID: 85013195087     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1080/17460441.2017.1274727     Document Type: Review
Times cited : (29)

References (63)
  • 1
    • 58049191116 scopus 로고    scopus 로고
    • Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery
    • Bajorath J., Computational approaches in chemogenomics and chemical biology:current and future impact on drug discovery. Expert Opin Drug Discov. 2008;3:1371–1376.
    • (2008) Expert Opin Drug Discov , vol.3 , pp. 1371-1376
    • Bajorath, J.1
  • 2
    • 84896525962 scopus 로고    scopus 로고
    • Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus
    • Reker D, Rodrigues T, Schneider P, et al. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci USA. 2014;111:4067–4072.•• A full technical description of the consensus SOM method.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 4067-4072
    • Reker, D.1    Rodrigues, T.2    Schneider, P.3
  • 3
    • 84964827675 scopus 로고    scopus 로고
    • The power of sophisticated phenotypic screening and modern mechanism-of-action methods
    • Wagner BK, Schreiber SL. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem Biol. 2016;23:3–9.
    • (2016) Cell Chem Biol , vol.23 , pp. 3-9
    • Wagner, B.K.1    Schreiber, S.L.2
  • 4
    • 84941992624 scopus 로고    scopus 로고
    • Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery
    • Jung HJ, Kwon HJ. Target deconvolution of bioactive small molecules:the heart of chemical biology and drug discovery. Arch Pharm Res. 2015;38:1627–1641.
    • (2015) Arch Pharm Res , pp. 38:1627-1641
    • Jung, H.J.1    Kwon, H.J.2
  • 5
    • 84857923356 scopus 로고    scopus 로고
    • Determining the mode of action of bioactive compounds
    • Azad MA, Wright GD. Determining the mode of action of bioactive compounds. Bioorg Med Chem. 2012;20:1929–1939.
    • (2012) Bioorg Med Chem , vol.20 , pp. 1929-1939
    • Azad, M.A.1    Wright, G.D.2
  • 6
    • 84976421750 scopus 로고    scopus 로고
    • Computational approaches in target identification and drug discovery
    • Katsila T, Spyroulias GA, Patrinos GP, et al. Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J. 2016;14:177–184.
    • (2016) Comput Struct Biotechnol J , vol.14 , pp. 177-184
    • Katsila, T.1    Spyroulias, G.A.2    Patrinos, G.P.3
  • 7
    • 84958543290 scopus 로고    scopus 로고
    • Use of machine learning approaches for novel drug discovery
    • Lima AN, Philot EA, Trossini GH, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11:225–239.
    • (2016) Expert Opin Drug Discov , vol.11 , pp. 225-239
    • Lima, A.N.1    Philot, E.A.2    Trossini, G.H.3
  • 8
    • 84948578044 scopus 로고    scopus 로고
    • Identification of drug candidates and repurposing opportunities through compound-target interaction networks
    • Cichonska A, Rousu J, Aittokallio T. Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin Drug Discov. 2015;10:1333–1345.
    • (2015) Expert Opin Drug Discov , vol.10 , pp. 1333-1345
    • Cichonska, A.1    Rousu, J.2    Aittokallio, T.3
  • 9
    • 84891904880 scopus 로고    scopus 로고
    • Computational methods in drug discovery
    • Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery. Pharmacol Rev. 2013;66:334–395.
    • (2013) Pharmacol Rev , vol.66 , pp. 334-395
    • Sliwoski, G.1    Kothiwale, S.2    Meiler, J.3
  • 10
    • 33646730764 scopus 로고    scopus 로고
    • Robust ligand-based modeling of the biological targets of known drugs
    • Cleves AN, Jain AN. Robust ligand-based modeling of the biological targets of known drugs. J Med Chem. 2006;49:2921–2938.
    • (2006) J Med Chem , vol.49 , pp. 2921-2938
    • Cleves, A.N.1    Jain, A.N.2
  • 11
    • 33846876695 scopus 로고    scopus 로고
    • Relating protein pharmacology by ligand chemistry
    • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotech. 2007;25:197–206.• A seminal paper on substructure-fingerprint-based target prediction.
    • (2007) Nat Biotech , vol.25 , pp. 197-206
    • Keiser, M.J.1    Roth, B.L.2    Armbruster, B.N.3
  • 12
    • 84945475267 scopus 로고    scopus 로고
    • Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
    • Ain QU, Aleksandrova A, Roessler FD, et al. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2015;5:405–424.•• A comprehensive introduction to machine learning methods for virtual screening.
    • (2015) Wiley Interdiscip Rev Comput Mol Sci , vol.5 , pp. 405-424
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3
  • 13
    • 81055140589 scopus 로고    scopus 로고
    • From in silico target prediction to multi-target drug design: current databases, methods and applications
    • Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design:current databases, methods and applications. J Proteomics. 2011;74:2554–2574.
    • (2011) J Proteomics , vol.74 , pp. 2554-2574
    • Koutsoukas, A.1    Simms, B.2    Kirchmair, J.3
  • 14
    • 84959567546 scopus 로고    scopus 로고
    • Designing multi-target compound libraries with Gaussian process models
    • Bieler M, Reutlinger M, Rodrigues T, et al. Designing multi-target compound libraries with Gaussian process models. Mol Inf. 2016;35:192–198.
    • (2016) Mol Inf , vol.35 , pp. 192-198
    • Bieler, M.1    Reutlinger, M.2    Rodrigues, T.3
  • 15
    • 84921491980 scopus 로고    scopus 로고
    • Multidimensional de novo design reveals 5-HT2B receptor-selective ligands
    • Rodrigues T, Hauser N, Reker D, et al. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. Angew Chem Int Ed. 2015;54:1551–1555.
    • (2015) Angew Chem Int Ed , vol.54 , pp. 1551-1555
    • Rodrigues, T.1    Hauser, N.2    Reker, D.3
  • 16
    • 84870987376 scopus 로고    scopus 로고
    • Automated design of ligands to polypharmacological profiles
    • Besnard J, Ruda GF, Setola V, et al. Automated design of ligands to polypharmacological profiles. Nature. 2012;492:215–220.•• A seminal paper on multi-objective hit-to-lead optimization.
    • (2012) Nature , vol.492 , pp. 215-220
    • Besnard, J.1    Ruda, G.F.2    Setola, V.3
  • 17
    • 84911496459 scopus 로고    scopus 로고
    • Revealing the macromolecular targets of complex natural products
    • Reker D, Perna AM, Rodrigues T, et al. Revealing the macromolecular targets of complex natural products. Nat Chem. 2014;6:1072–1078.•• Full-fledged application of SOMs to natural product de-orphaning.
    • (2014) Nat Chem , vol.6 , pp. 1072-1078
    • Reker, D.1    Perna, A.M.2    Rodrigues, T.3
  • 18
    • 84990236409 scopus 로고    scopus 로고
    • De-orphaning the macromolecular targets of the natural anticancer compound doliculide
    • Schneider G, Reker D, Chen T, et al. De-orphaning the macromolecular targets of the natural anticancer compound doliculide. Angew Chem Int Ed. 2016;55:12408–12411.
    • (2016) Angew Chem Int Ed , vol.55 , pp. 12408-12411
    • Schneider, G.1    Reker, D.2    Chen, T.3
  • 19
    • 84940450380 scopus 로고    scopus 로고
    • Revealing the macromolecular targets of fragment-like natural products
    • Rodrigues T, Reker D, Kunze J, et al. Revealing the macromolecular targets of fragment-like natural products. Angew Chem Int Ed. 2015;54:10662–10666.
    • (2015) Angew Chem Int Ed , vol.54 , pp. 10662-10666
    • Rodrigues, T.1    Reker, D.2    Kunze, J.3
  • 20
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.•• A comprehensive introduction to deep neural networks.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 21
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35:3–14.
    • (2016) Mol Inf , vol.35 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 22
    • 84986243956 scopus 로고    scopus 로고
    • The next era: deep learning in pharmaceutical research
    • Ekins S. The next era:deep learning in pharmaceutical research. Pharm Res. 2016;33:2594–2603.• A timely and critical review of the field.
    • (2016) Pharm Res , vol.33 , pp. 2594-2603
    • Ekins, S.1
  • 23
    • 33748242731 scopus 로고
    • Neural networks in chemistry
    • Gasteiger J, Zupan J. Neural networks in chemistry. Angew Chem Int Ed. 1993;32:503–527.
    • (1993) Angew Chem Int Ed , vol.32 , pp. 503-527
    • Gasteiger, J.1    Zupan, J.2
  • 24
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 25
    • 61949313682 scopus 로고    scopus 로고
    • Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing
    • Schneider P, Tanrikulu Y, Schneider G. Self-organizing maps in drug discovery:compound library design, scaffold-hopping, repurposing. Curr Med Chem. 2009;16:258–266.
    • (2009) Curr Med Chem , vol.16 , pp. 258-266
    • Schneider, P.1    Tanrikulu, Y.2    Schneider, G.3
  • 26
    • 70449440581 scopus 로고    scopus 로고
    • An emergent self-organizing map based analysis pipeline for comparative metabolome studies
    • Haddad I, Hiller K, Frimmersdorf E, et al. An emergent self-organizing map based analysis pipeline for comparative metabolome studies. In Silico Biol. 2009;9:163–178.
    • (2009) In SilicoBiol , vol.9 , pp. 163-178
    • Haddad, I.1    Hiller, K.2    Frimmersdorf, E.3
  • 27
    • 84878602338 scopus 로고    scopus 로고
    • MIANN models in medicinal, physical and organic chemistry
    • González-Díaz H1, Arrasate S, Sotomayor N, et al. MIANN models in medicinal, physical and organic chemistry. Curr Top Med Chem. 2013;13:619–641.
    • (2013) Curr Top Med Chem , vol.13 , pp. 619-641
    • González-Díaz, H.1    Arrasate, S.2    Sotomayor, N.3
  • 28
    • 85000896742 scopus 로고    scopus 로고
    • Design of efficient computational workflows for in silico drug repurposing
    • Vanhaelen Q, Mamoshina P, Aliper AM, et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2016. DOI:10.1016/j.drudis.2016.09.019
    • (2016) Drug Discov Today
    • Vanhaelen, Q.1    Mamoshina, P.2    Aliper, A.M.3
  • 29
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider G, Wrede P. Artificial neural networks for computer-based molecular design. Prog Biophys Mol Biol. 1998;70:175–222.
    • (1998) Prog Biophys Mol Biol , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 31
    • 84981543023 scopus 로고    scopus 로고
    • Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications
    • Pastur-Romay LA, Cedrón F, Pazos A, et al. Deep artificial neural networks and neuromorphic chips for big data analysis:pharmaceutical and bioinformatics applications. Int J Mol Sci. 2016;17:1313.
    • (2016) Int J Mol Sci , vol.17 , pp. 1313
    • Pastur-Romay, L.A.1    Cedrón, F.2    Pazos, A.3
  • 32
    • 84985021911 scopus 로고    scopus 로고
    • Recommendation techniques for drug-target interaction prediction and drug repurposing
    • Alaimo S, Giugno R, Pulvirenti A. Recommendation techniques for drug-target interaction prediction and drug repurposing. Meth Mol Biol. 2016;1415:441–462.
    • (2016) Meth Mol Biol , vol.1415 , pp. 441-462
    • Alaimo, S.1    Giugno, R.2    Pulvirenti, A.3
  • 33
    • 84964091167 scopus 로고    scopus 로고
    • Using deep learning for compound selectivity prediction
    • Zhang R, Li J, Lu J, et al. Using deep learning for compound selectivity prediction. Curr Comput Aided-Drug Des. 2016;12:5–14.
    • (2016) Curr Comput Aided-Drug Des , vol.12 , pp. 5-14
    • Zhang, R.1    Li, J.2    Lu, J.3
  • 34
    • 84981328261 scopus 로고    scopus 로고
    • CGBVS-DNN: prediction of compound-protein interactions based on deep learning
    • Hamanaka M, Taneishi K, Iwata H, et al. CGBVS-DNN:prediction of compound-protein interactions based on deep learning. Mol Inf. 2017;36. DOI:10.1002/minf.201600045
    • (2017) Mol Inf , pp. 36
    • Hamanaka, M.1    Taneishi, K.2    Iwata, H.3
  • 35
    • 84979678858 scopus 로고    scopus 로고
    • Boosting compound-protein interaction prediction by deep learning
    • Tian K, Shao M, Wang Y, et al. Boosting compound-protein interaction prediction by deep learning. Methods. 2016;110:64–72.
    • (2016) Methods , vol.110 , pp. 64-72
    • Tian, K.1    Shao, M.2    Wang, Y.3
  • 36
    • 84953225344 scopus 로고    scopus 로고
    • Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives
    • Romero-Durán FJ, Alonso N, Yañez M, et al. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology. 2016;103:270–278.
    • (2016) Neuropharmacology , vol.103 , pp. 270-278
    • Romero-Durán, F.J.1    Alonso, N.2    Yañez, M.3
  • 37
    • 84990214635 scopus 로고    scopus 로고
    • Drug discovery and development in the era of big data
    • Bajorath J, Overington J, Jenkins JL, et al. Drug discovery and development in the era of big data. Future Med Chem. 2016;8:1807–1813.
    • (2016) Future Med Chem , vol.8 , pp. 1807-1813
    • Bajorath, J.1    Overington, J.2    Jenkins, J.L.3
  • 39
    • 85005925841 scopus 로고    scopus 로고
    • Use of big data for drug development and for public and personal health and care
    • Leyens L, Reumann M, Malats N, et al. Use of big data for drug development and for public and personal health and care. Genet Epidemiol. 2017;41:51–60.
    • (2017) Genet Epidemiol , vol.41 , pp. 51-60
    • Leyens, L.1    Reumann, M.2    Malats, N.3
  • 40
    • 84975701873 scopus 로고    scopus 로고
    • Chemoinformatic classification methods and their applicability domain
    • Mathea M, Klingspohn W, Baumann K. Chemoinformatic classification methods and their applicability domain. Mol Inf. 2016;35:160–180.•• An authoritative review of applicability domains.
    • (2016) Mol Inf , vol.35 , pp. 160-180
    • Mathea, M.1    Klingspohn, W.2    Baumann, K.3
  • 41
    • 38049165680 scopus 로고    scopus 로고
    • Processing and classification of chemical data inspired by insect olfaction
    • Schmuker M, Schneider G. Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci USA. 2007;104:20285–20289.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 20285-20289
    • Schmuker, M.1    Schneider, G.2
  • 42
    • 77952664105 scopus 로고    scopus 로고
    • Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction
    • Schneider G, Tanrikulu Y, Schneider P. Self-organizing molecular fingerprints:a ligand-based view on drug-like chemical space and off-target prediction. Future Med Chem. 2009;1:213–218.
    • (2009) Future Med Chem , vol.1 , pp. 213-218
    • Schneider, G.1    Tanrikulu, Y.2    Schneider, P.3
  • 43
    • 84960539870 scopus 로고    scopus 로고
    • Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides
    • Schneider P, Müller AT, Gabernet G, et al. Hybrid network model for “deep learning” of chemical data:application to antimicrobial peptides. Mol Inf. 2017;36. DOI:10.1002/minf.201600011
    • (2017) Mol Inf , pp. 36
    • Schneider, P.1    Müller, A.T.2    Gabernet, G.3
  • 44
    • 58449120191 scopus 로고    scopus 로고
    • Clustering and its application in multi-target prediction
    • Liu W, Johnson DE. Clustering and its application in multi-target prediction. Curr Opin Drug Discov Devel. 2009;12:98–107.
    • (2009) Curr Opin Drug Discov Devel , vol.12 , pp. 98-107
    • Liu, W.1    Johnson, D.E.2
  • 45
    • 67650468167 scopus 로고    scopus 로고
    • Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets
    • Tan L, Bajorath J. Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets. Chem Biol Drug Des. 2009;74:25–32.
    • (2009) Chem Biol Drug Des , vol.74 , pp. 25-32
    • Tan, L.1    Bajorath, J.2
  • 46
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: a brief review
    • Ding H, Takigawa I, Mamitsuka H, et al. Similarity-based machine learning methods for predicting drug-target interactions:a brief review. Brief Bioinform. 2014;15:734–747.
    • (2014) Brief Bioinform , vol.15 , pp. 734-747
    • Ding, H.1    Takigawa, I.2    Mamitsuka, H.3
  • 47
    • 84915753460 scopus 로고    scopus 로고
    • Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach
    • Sawada R, Kotera M, Yamanishi Y. Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inf. 2014;33:719–731.
    • (2014) Mol Inf , vol.33 , pp. 719-731
    • Sawada, R.1    Kotera, M.2    Yamanishi, Y.3
  • 48
    • 28344456380 scopus 로고    scopus 로고
    • Multi-space classification for predicting GPCR-ligands
    • Givehchi A, Schneider G. Multi-space classification for predicting GPCR-ligands. Mol Divers. 2005;9:371–383.
    • (2005) Mol Divers , vol.9 , pp. 371-383
    • Givehchi, A.1    Schneider, G.2
  • 49
    • 84856782646 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery
    • Reutlinger M, Schneider G. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model. 2012;34:108–117.
    • (2012) J Mol Graph Model , vol.34 , pp. 108-117
    • Reutlinger, M.1    Schneider, G.2
  • 51
    • 0242467732 scopus 로고    scopus 로고
    • Collection of bioactive reference compounds for focused library design
    • Schneider P, Schneider G. Collection of bioactive reference compounds for focused library design. QSAR Comb Sci. 2003;22:713–718.
    • (2003) QSAR Comb Sci , vol.22 , pp. 713-718
    • Schneider, P.1    Schneider, G.2
  • 52
    • 33750357203 scopus 로고    scopus 로고
    • Predicting compound selectivity by self-organizing maps: cross-activities of metabotropic glutamate receptor antagonists
    • Noeske T, Sasse BC, Stark H, et al. Predicting compound selectivity by self-organizing maps:cross-activities of metabotropic glutamate receptor antagonists. Chem Med Chem. 2006;1:1066–1068.
    • (2006) Chem Med Chem , vol.1 , pp. 1066-1068
    • Noeske, T.1    Sasse, B.C.2    Stark, H.3
  • 53
    • 84944353181 scopus 로고    scopus 로고
    • Activity, assay and target data curation and quality in the ChEMBL database
    • Papadatos G, Gaulton A, Hersey A, et al. Activity, assay and target data curation and quality in the ChEMBL database. J Comput Aided Mol Des. 2015;29:885–896.
    • (2015) J Comput Aided Mol Des , vol.29 , pp. 885-896
    • Papadatos, G.1    Gaulton, A.2    Hersey, A.3
  • 54
    • 84979586933 scopus 로고    scopus 로고
    • PubChem substance and compound databases
    • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–13.
    • (2016) Nucleic Acids Res , vol.44 , pp. D1202-D1213
    • Kim, S.1    Thiessen, P.A.2    Bolton, E.E.3
  • 55
    • 84951908473 scopus 로고    scopus 로고
    • Medicinal chemistry in the era of big data
    • Richter L, Ecker GF. Medicinal chemistry in the era of big data. Drug Discov Today Technol. 2015;14:37–41.• A comprehensive introduction to the opportunities and challenges of big data for drug discovery.
    • (2015) Drug Discov Today Technol , vol.14 , pp. 37-41
    • Richter, L.1    Ecker, G.F.2
  • 56
    • 84868138829 scopus 로고    scopus 로고
    • Open PHACTS: semantic interoperability for drug discovery
    • Williams AJ, Harland L, Groth P, et al. Open PHACTS:semantic interoperability for drug discovery. Drug Discov Today. 2012;17:1188–1198.
    • (2012) Drug Discov Today , vol.17 , pp. 1188-1198
    • Williams, A.J.1    Harland, L.2    Groth, P.3
  • 57
    • 84958987044 scopus 로고    scopus 로고
    • Leveraging big data to transform target selection and drug discovery
    • Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther. 2016;99:285–297.
    • (2016) Clin Pharmacol Ther , vol.99 , pp. 285-297
    • Chen, B.1    Butte, A.J.2
  • 58
    • 57849156863 scopus 로고    scopus 로고
    • Voyages to the (un)known: adaptive design of bioactive compounds
    • Schneider G, Hartenfeller M, Reutlinger M, et al. Voyages to the (un)known:adaptive design of bioactive compounds. Trends Biotechnol. 2009;27:18–26.• An overview of SOMs for molecular design and chemical space analysis.
    • (2009) Trends Biotechnol , vol.27 , pp. 18-26
    • Schneider, G.1    Hartenfeller, M.2    Reutlinger, M.3
  • 61
    • 84896519769 scopus 로고    scopus 로고
    • Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS)
    • Gaspar HA, Marcou G, Horvath D, et al. Generative topographic mapping-based classification models and their applicability domain:application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). J Chem Inf Model. 2013;53:3318–3325.
    • (2013) J Chem Inf Model , vol.53 , pp. 3318-3325
    • Gaspar, H.A.1    Marcou, G.2    Horvath, D.3
  • 62
    • 84939994871 scopus 로고    scopus 로고
    • Chemography of natural product space
    • Miyao T, Reker D, Schneider P, et al. Chemography of natural product space. Planta Med. 2015;81:429–435.
    • (2015) Planta Med , vol.81 , pp. 429-435
    • Miyao, T.1    Reker, D.2    Schneider, P.3
  • 63
    • 84947930825 scopus 로고    scopus 로고
    • Stargate GTM: bridging descriptor and activity spaces
    • Gaspar HA, Baskin II, Marcou G, et al. Stargate GTM:bridging descriptor and activity spaces. J Chem Inf Model. 2015;55:2403–2410.• A full technical description of generative topographic mapping for target prediction.
    • (2015) J Chem Inf Model , vol.55 , pp. 2403-2410
    • Gaspar, H.A.1    Baskin, I.I.2    Marcou, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.