-
1
-
-
58049191116
-
Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery
-
Bajorath J., Computational approaches in chemogenomics and chemical biology:current and future impact on drug discovery. Expert Opin Drug Discov. 2008;3:1371–1376.
-
(2008)
Expert Opin Drug Discov
, vol.3
, pp. 1371-1376
-
-
Bajorath, J.1
-
2
-
-
84896525962
-
Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus
-
Reker D, Rodrigues T, Schneider P, et al. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci USA. 2014;111:4067–4072.•• A full technical description of the consensus SOM method.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 4067-4072
-
-
Reker, D.1
Rodrigues, T.2
Schneider, P.3
-
3
-
-
84964827675
-
The power of sophisticated phenotypic screening and modern mechanism-of-action methods
-
Wagner BK, Schreiber SL. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem Biol. 2016;23:3–9.
-
(2016)
Cell Chem Biol
, vol.23
, pp. 3-9
-
-
Wagner, B.K.1
Schreiber, S.L.2
-
4
-
-
84941992624
-
Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery
-
Jung HJ, Kwon HJ. Target deconvolution of bioactive small molecules:the heart of chemical biology and drug discovery. Arch Pharm Res. 2015;38:1627–1641.
-
(2015)
Arch Pharm Res
, pp. 38:1627-1641
-
-
Jung, H.J.1
Kwon, H.J.2
-
5
-
-
84857923356
-
Determining the mode of action of bioactive compounds
-
Azad MA, Wright GD. Determining the mode of action of bioactive compounds. Bioorg Med Chem. 2012;20:1929–1939.
-
(2012)
Bioorg Med Chem
, vol.20
, pp. 1929-1939
-
-
Azad, M.A.1
Wright, G.D.2
-
7
-
-
84958543290
-
Use of machine learning approaches for novel drug discovery
-
Lima AN, Philot EA, Trossini GH, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11:225–239.
-
(2016)
Expert Opin Drug Discov
, vol.11
, pp. 225-239
-
-
Lima, A.N.1
Philot, E.A.2
Trossini, G.H.3
-
8
-
-
84948578044
-
Identification of drug candidates and repurposing opportunities through compound-target interaction networks
-
Cichonska A, Rousu J, Aittokallio T. Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin Drug Discov. 2015;10:1333–1345.
-
(2015)
Expert Opin Drug Discov
, vol.10
, pp. 1333-1345
-
-
Cichonska, A.1
Rousu, J.2
Aittokallio, T.3
-
10
-
-
33646730764
-
Robust ligand-based modeling of the biological targets of known drugs
-
Cleves AN, Jain AN. Robust ligand-based modeling of the biological targets of known drugs. J Med Chem. 2006;49:2921–2938.
-
(2006)
J Med Chem
, vol.49
, pp. 2921-2938
-
-
Cleves, A.N.1
Jain, A.N.2
-
11
-
-
33846876695
-
Relating protein pharmacology by ligand chemistry
-
Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotech. 2007;25:197–206.• A seminal paper on substructure-fingerprint-based target prediction.
-
(2007)
Nat Biotech
, vol.25
, pp. 197-206
-
-
Keiser, M.J.1
Roth, B.L.2
Armbruster, B.N.3
-
12
-
-
84945475267
-
Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
-
Ain QU, Aleksandrova A, Roessler FD, et al. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2015;5:405–424.•• A comprehensive introduction to machine learning methods for virtual screening.
-
(2015)
Wiley Interdiscip Rev Comput Mol Sci
, vol.5
, pp. 405-424
-
-
Ain, Q.U.1
Aleksandrova, A.2
Roessler, F.D.3
-
13
-
-
81055140589
-
From in silico target prediction to multi-target drug design: current databases, methods and applications
-
Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design:current databases, methods and applications. J Proteomics. 2011;74:2554–2574.
-
(2011)
J Proteomics
, vol.74
, pp. 2554-2574
-
-
Koutsoukas, A.1
Simms, B.2
Kirchmair, J.3
-
14
-
-
84959567546
-
Designing multi-target compound libraries with Gaussian process models
-
Bieler M, Reutlinger M, Rodrigues T, et al. Designing multi-target compound libraries with Gaussian process models. Mol Inf. 2016;35:192–198.
-
(2016)
Mol Inf
, vol.35
, pp. 192-198
-
-
Bieler, M.1
Reutlinger, M.2
Rodrigues, T.3
-
15
-
-
84921491980
-
Multidimensional de novo design reveals 5-HT2B receptor-selective ligands
-
Rodrigues T, Hauser N, Reker D, et al. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. Angew Chem Int Ed. 2015;54:1551–1555.
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 1551-1555
-
-
Rodrigues, T.1
Hauser, N.2
Reker, D.3
-
16
-
-
84870987376
-
Automated design of ligands to polypharmacological profiles
-
Besnard J, Ruda GF, Setola V, et al. Automated design of ligands to polypharmacological profiles. Nature. 2012;492:215–220.•• A seminal paper on multi-objective hit-to-lead optimization.
-
(2012)
Nature
, vol.492
, pp. 215-220
-
-
Besnard, J.1
Ruda, G.F.2
Setola, V.3
-
17
-
-
84911496459
-
Revealing the macromolecular targets of complex natural products
-
Reker D, Perna AM, Rodrigues T, et al. Revealing the macromolecular targets of complex natural products. Nat Chem. 2014;6:1072–1078.•• Full-fledged application of SOMs to natural product de-orphaning.
-
(2014)
Nat Chem
, vol.6
, pp. 1072-1078
-
-
Reker, D.1
Perna, A.M.2
Rodrigues, T.3
-
18
-
-
84990236409
-
De-orphaning the macromolecular targets of the natural anticancer compound doliculide
-
Schneider G, Reker D, Chen T, et al. De-orphaning the macromolecular targets of the natural anticancer compound doliculide. Angew Chem Int Ed. 2016;55:12408–12411.
-
(2016)
Angew Chem Int Ed
, vol.55
, pp. 12408-12411
-
-
Schneider, G.1
Reker, D.2
Chen, T.3
-
19
-
-
84940450380
-
Revealing the macromolecular targets of fragment-like natural products
-
Rodrigues T, Reker D, Kunze J, et al. Revealing the macromolecular targets of fragment-like natural products. Angew Chem Int Ed. 2015;54:10662–10666.
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 10662-10666
-
-
Rodrigues, T.1
Reker, D.2
Kunze, J.3
-
20
-
-
84930630277
-
Deep learning
-
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.•• A comprehensive introduction to deep neural networks.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
22
-
-
84986243956
-
The next era: deep learning in pharmaceutical research
-
Ekins S. The next era:deep learning in pharmaceutical research. Pharm Res. 2016;33:2594–2603.• A timely and critical review of the field.
-
(2016)
Pharm Res
, vol.33
, pp. 2594-2603
-
-
Ekins, S.1
-
24
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.
-
(1982)
Biol Cybern
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
25
-
-
61949313682
-
Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing
-
Schneider P, Tanrikulu Y, Schneider G. Self-organizing maps in drug discovery:compound library design, scaffold-hopping, repurposing. Curr Med Chem. 2009;16:258–266.
-
(2009)
Curr Med Chem
, vol.16
, pp. 258-266
-
-
Schneider, P.1
Tanrikulu, Y.2
Schneider, G.3
-
26
-
-
70449440581
-
An emergent self-organizing map based analysis pipeline for comparative metabolome studies
-
Haddad I, Hiller K, Frimmersdorf E, et al. An emergent self-organizing map based analysis pipeline for comparative metabolome studies. In Silico Biol. 2009;9:163–178.
-
(2009)
In SilicoBiol
, vol.9
, pp. 163-178
-
-
Haddad, I.1
Hiller, K.2
Frimmersdorf, E.3
-
27
-
-
84878602338
-
MIANN models in medicinal, physical and organic chemistry
-
González-Díaz H1, Arrasate S, Sotomayor N, et al. MIANN models in medicinal, physical and organic chemistry. Curr Top Med Chem. 2013;13:619–641.
-
(2013)
Curr Top Med Chem
, vol.13
, pp. 619-641
-
-
González-Díaz, H.1
Arrasate, S.2
Sotomayor, N.3
-
28
-
-
85000896742
-
Design of efficient computational workflows for in silico drug repurposing
-
Vanhaelen Q, Mamoshina P, Aliper AM, et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2016. DOI:10.1016/j.drudis.2016.09.019
-
(2016)
Drug Discov Today
-
-
Vanhaelen, Q.1
Mamoshina, P.2
Aliper, A.M.3
-
29
-
-
0031735526
-
Artificial neural networks for computer-based molecular design
-
Schneider G, Wrede P. Artificial neural networks for computer-based molecular design. Prog Biophys Mol Biol. 1998;70:175–222.
-
(1998)
Prog Biophys Mol Biol
, vol.70
, pp. 175-222
-
-
Schneider, G.1
Wrede, P.2
-
31
-
-
84981543023
-
Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications
-
Pastur-Romay LA, Cedrón F, Pazos A, et al. Deep artificial neural networks and neuromorphic chips for big data analysis:pharmaceutical and bioinformatics applications. Int J Mol Sci. 2016;17:1313.
-
(2016)
Int J Mol Sci
, vol.17
, pp. 1313
-
-
Pastur-Romay, L.A.1
Cedrón, F.2
Pazos, A.3
-
32
-
-
84985021911
-
Recommendation techniques for drug-target interaction prediction and drug repurposing
-
Alaimo S, Giugno R, Pulvirenti A. Recommendation techniques for drug-target interaction prediction and drug repurposing. Meth Mol Biol. 2016;1415:441–462.
-
(2016)
Meth Mol Biol
, vol.1415
, pp. 441-462
-
-
Alaimo, S.1
Giugno, R.2
Pulvirenti, A.3
-
33
-
-
84964091167
-
Using deep learning for compound selectivity prediction
-
Zhang R, Li J, Lu J, et al. Using deep learning for compound selectivity prediction. Curr Comput Aided-Drug Des. 2016;12:5–14.
-
(2016)
Curr Comput Aided-Drug Des
, vol.12
, pp. 5-14
-
-
Zhang, R.1
Li, J.2
Lu, J.3
-
34
-
-
84981328261
-
CGBVS-DNN: prediction of compound-protein interactions based on deep learning
-
Hamanaka M, Taneishi K, Iwata H, et al. CGBVS-DNN:prediction of compound-protein interactions based on deep learning. Mol Inf. 2017;36. DOI:10.1002/minf.201600045
-
(2017)
Mol Inf
, pp. 36
-
-
Hamanaka, M.1
Taneishi, K.2
Iwata, H.3
-
35
-
-
84979678858
-
Boosting compound-protein interaction prediction by deep learning
-
Tian K, Shao M, Wang Y, et al. Boosting compound-protein interaction prediction by deep learning. Methods. 2016;110:64–72.
-
(2016)
Methods
, vol.110
, pp. 64-72
-
-
Tian, K.1
Shao, M.2
Wang, Y.3
-
36
-
-
84953225344
-
Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives
-
Romero-Durán FJ, Alonso N, Yañez M, et al. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology. 2016;103:270–278.
-
(2016)
Neuropharmacology
, vol.103
, pp. 270-278
-
-
Romero-Durán, F.J.1
Alonso, N.2
Yañez, M.3
-
37
-
-
84990214635
-
Drug discovery and development in the era of big data
-
Bajorath J, Overington J, Jenkins JL, et al. Drug discovery and development in the era of big data. Future Med Chem. 2016;8:1807–1813.
-
(2016)
Future Med Chem
, vol.8
, pp. 1807-1813
-
-
Bajorath, J.1
Overington, J.2
Jenkins, J.L.3
-
39
-
-
85005925841
-
Use of big data for drug development and for public and personal health and care
-
Leyens L, Reumann M, Malats N, et al. Use of big data for drug development and for public and personal health and care. Genet Epidemiol. 2017;41:51–60.
-
(2017)
Genet Epidemiol
, vol.41
, pp. 51-60
-
-
Leyens, L.1
Reumann, M.2
Malats, N.3
-
40
-
-
84975701873
-
Chemoinformatic classification methods and their applicability domain
-
Mathea M, Klingspohn W, Baumann K. Chemoinformatic classification methods and their applicability domain. Mol Inf. 2016;35:160–180.•• An authoritative review of applicability domains.
-
(2016)
Mol Inf
, vol.35
, pp. 160-180
-
-
Mathea, M.1
Klingspohn, W.2
Baumann, K.3
-
41
-
-
38049165680
-
Processing and classification of chemical data inspired by insect olfaction
-
Schmuker M, Schneider G. Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci USA. 2007;104:20285–20289.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 20285-20289
-
-
Schmuker, M.1
Schneider, G.2
-
42
-
-
77952664105
-
Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction
-
Schneider G, Tanrikulu Y, Schneider P. Self-organizing molecular fingerprints:a ligand-based view on drug-like chemical space and off-target prediction. Future Med Chem. 2009;1:213–218.
-
(2009)
Future Med Chem
, vol.1
, pp. 213-218
-
-
Schneider, G.1
Tanrikulu, Y.2
Schneider, P.3
-
43
-
-
84960539870
-
Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides
-
Schneider P, Müller AT, Gabernet G, et al. Hybrid network model for “deep learning” of chemical data:application to antimicrobial peptides. Mol Inf. 2017;36. DOI:10.1002/minf.201600011
-
(2017)
Mol Inf
, pp. 36
-
-
Schneider, P.1
Müller, A.T.2
Gabernet, G.3
-
44
-
-
58449120191
-
Clustering and its application in multi-target prediction
-
Liu W, Johnson DE. Clustering and its application in multi-target prediction. Curr Opin Drug Discov Devel. 2009;12:98–107.
-
(2009)
Curr Opin Drug Discov Devel
, vol.12
, pp. 98-107
-
-
Liu, W.1
Johnson, D.E.2
-
45
-
-
67650468167
-
Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets
-
Tan L, Bajorath J. Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets. Chem Biol Drug Des. 2009;74:25–32.
-
(2009)
Chem Biol Drug Des
, vol.74
, pp. 25-32
-
-
Tan, L.1
Bajorath, J.2
-
46
-
-
84928196309
-
Similarity-based machine learning methods for predicting drug-target interactions: a brief review
-
Ding H, Takigawa I, Mamitsuka H, et al. Similarity-based machine learning methods for predicting drug-target interactions:a brief review. Brief Bioinform. 2014;15:734–747.
-
(2014)
Brief Bioinform
, vol.15
, pp. 734-747
-
-
Ding, H.1
Takigawa, I.2
Mamitsuka, H.3
-
47
-
-
84915753460
-
Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach
-
Sawada R, Kotera M, Yamanishi Y. Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inf. 2014;33:719–731.
-
(2014)
Mol Inf
, vol.33
, pp. 719-731
-
-
Sawada, R.1
Kotera, M.2
Yamanishi, Y.3
-
48
-
-
28344456380
-
Multi-space classification for predicting GPCR-ligands
-
Givehchi A, Schneider G. Multi-space classification for predicting GPCR-ligands. Mol Divers. 2005;9:371–383.
-
(2005)
Mol Divers
, vol.9
, pp. 371-383
-
-
Givehchi, A.1
Schneider, G.2
-
49
-
-
84856782646
-
Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery
-
Reutlinger M, Schneider G. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model. 2012;34:108–117.
-
(2012)
J Mol Graph Model
, vol.34
, pp. 108-117
-
-
Reutlinger, M.1
Schneider, G.2
-
51
-
-
0242467732
-
Collection of bioactive reference compounds for focused library design
-
Schneider P, Schneider G. Collection of bioactive reference compounds for focused library design. QSAR Comb Sci. 2003;22:713–718.
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 713-718
-
-
Schneider, P.1
Schneider, G.2
-
52
-
-
33750357203
-
Predicting compound selectivity by self-organizing maps: cross-activities of metabotropic glutamate receptor antagonists
-
Noeske T, Sasse BC, Stark H, et al. Predicting compound selectivity by self-organizing maps:cross-activities of metabotropic glutamate receptor antagonists. Chem Med Chem. 2006;1:1066–1068.
-
(2006)
Chem Med Chem
, vol.1
, pp. 1066-1068
-
-
Noeske, T.1
Sasse, B.C.2
Stark, H.3
-
53
-
-
84944353181
-
Activity, assay and target data curation and quality in the ChEMBL database
-
Papadatos G, Gaulton A, Hersey A, et al. Activity, assay and target data curation and quality in the ChEMBL database. J Comput Aided Mol Des. 2015;29:885–896.
-
(2015)
J Comput Aided Mol Des
, vol.29
, pp. 885-896
-
-
Papadatos, G.1
Gaulton, A.2
Hersey, A.3
-
55
-
-
84951908473
-
Medicinal chemistry in the era of big data
-
Richter L, Ecker GF. Medicinal chemistry in the era of big data. Drug Discov Today Technol. 2015;14:37–41.• A comprehensive introduction to the opportunities and challenges of big data for drug discovery.
-
(2015)
Drug Discov Today Technol
, vol.14
, pp. 37-41
-
-
Richter, L.1
Ecker, G.F.2
-
56
-
-
84868138829
-
Open PHACTS: semantic interoperability for drug discovery
-
Williams AJ, Harland L, Groth P, et al. Open PHACTS:semantic interoperability for drug discovery. Drug Discov Today. 2012;17:1188–1198.
-
(2012)
Drug Discov Today
, vol.17
, pp. 1188-1198
-
-
Williams, A.J.1
Harland, L.2
Groth, P.3
-
57
-
-
84958987044
-
Leveraging big data to transform target selection and drug discovery
-
Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther. 2016;99:285–297.
-
(2016)
Clin Pharmacol Ther
, vol.99
, pp. 285-297
-
-
Chen, B.1
Butte, A.J.2
-
58
-
-
57849156863
-
Voyages to the (un)known: adaptive design of bioactive compounds
-
Schneider G, Hartenfeller M, Reutlinger M, et al. Voyages to the (un)known:adaptive design of bioactive compounds. Trends Biotechnol. 2009;27:18–26.• An overview of SOMs for molecular design and chemical space analysis.
-
(2009)
Trends Biotechnol
, vol.27
, pp. 18-26
-
-
Schneider, G.1
Hartenfeller, M.2
Reutlinger, M.3
-
61
-
-
84896519769
-
Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS)
-
Gaspar HA, Marcou G, Horvath D, et al. Generative topographic mapping-based classification models and their applicability domain:application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). J Chem Inf Model. 2013;53:3318–3325.
-
(2013)
J Chem Inf Model
, vol.53
, pp. 3318-3325
-
-
Gaspar, H.A.1
Marcou, G.2
Horvath, D.3
-
62
-
-
84939994871
-
Chemography of natural product space
-
Miyao T, Reker D, Schneider P, et al. Chemography of natural product space. Planta Med. 2015;81:429–435.
-
(2015)
Planta Med
, vol.81
, pp. 429-435
-
-
Miyao, T.1
Reker, D.2
Schneider, P.3
-
63
-
-
84947930825
-
Stargate GTM: bridging descriptor and activity spaces
-
Gaspar HA, Baskin II, Marcou G, et al. Stargate GTM:bridging descriptor and activity spaces. J Chem Inf Model. 2015;55:2403–2410.• A full technical description of generative topographic mapping for target prediction.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 2403-2410
-
-
Gaspar, H.A.1
Baskin, I.I.2
Marcou, G.3
|