-
1
-
-
84858033532
-
Improved machine learning models for predicting selective compounds
-
Ning, X., Walters, M.; Karypisxr, G. Improved machine learning models for predicting selective compounds. J. Chem. Inf. Model., 2012; 52(1), 38-50.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, Issue.1
, pp. 38-50
-
-
Ning, X.1
Walters, M.2
Karypisxr, G.3
-
2
-
-
54249155522
-
Network pharmacology: The next paradigm in drug discovery
-
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008; 4(11), 682-690.
-
(2008)
Nat. Chem. Biol.
, vol.4
, Issue.11
, pp. 682-690
-
-
Hopkins, A.L.1
-
3
-
-
33746156959
-
Global mapping of pharmacological space
-
Paolini, G.V.; Shapland, R.H.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006; 24(7), 805-815.
-
(2006)
Nat. Biotechnol.
, vol.24
, Issue.7
, pp. 805-815
-
-
Paolini, G.V.1
Shapland, R.H.2
van Hoorn, W.P.3
Mason, J.S.4
Hopkins, A.L.5
-
4
-
-
4644271084
-
Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia
-
Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug. Discov., 2004; 3(4), 353-359.
-
(2004)
Nat. Rev. Drug. Discov.
, vol.3
, Issue.4
, pp. 353-359
-
-
Roth, B.L.1
Sheffler, D.J.2
Kroeze, W.K.3
-
5
-
-
38049018155
-
A quantitative analysis of kinase inhibitor selectivity
-
Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; Faraoni, R.; Floyd, M.; Hunt, J.P.; Lockhart, D.J.; Milanov, Z.V.; Morrison, M.J.; Pallares, G.; Patel, H.K.; Pritchard, S.; Wodicka, L.M.; Zarrinkar, P.P. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2008; 26(1), 127-132.
-
(2008)
Nat. Biotechnol.
, vol.26
, Issue.1
, pp. 127-132
-
-
Karaman, M.W.1
Herrgard, S.2
Treiber, D.K.3
Gallant, P.4
Atteridge, C.E.5
Campbell, B.T.6
Chan, K.W.7
Ciceri, P.8
Davis, M.I.9
Edeen, P.T.10
Faraoni, R.11
Floyd, M.12
Hunt, J.P.13
Lockhart, D.J.14
Milanov, Z.V.15
Morrison, M.J.16
Pallares, G.17
Patel, H.K.18
Pritchard, S.19
Wodicka, L.M.20
Zarrinkar, P.P.21
more..
-
6
-
-
34447521097
-
Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients
-
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 1962; 194(4824), 178-180.
-
(1962)
Nature
, vol.194
, Issue.4824
, pp. 178-180
-
-
Hansch, C.1
Maloney, P.P.2
Fujita, T.3
Muir, R.M.4
-
7
-
-
34548168343
-
Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints
-
Vogt, I.; Stumpfe, D.; Ahmed, H.E.; Bajorath, J. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints. Chem. Biol. Drug. Des., 2007; 70(3), 195-205.
-
(2007)
Chem. Biol. Drug. Des.
, vol.70
, Issue.3
, pp. 195-205
-
-
Vogt, I.1
Stumpfe, D.2
Ahmed, H.E.3
Bajorath, J.4
-
8
-
-
43949101012
-
Methods for computer-aided chemical biology. Part 3: Analysis of structure-selectivity relationships through single- or dual-step selectivity searching and bayesian classification
-
Stumpfe, D.; Geppert, H.; Bajorath, J. Methods for computer-aided chemical biology. Part 3: Analysis of structure-selectivity relationships through single- or dual-step selectivity searching and bayesian classification. Chem. Biol. Drug. Des., 2008; 71(6), 518-528.
-
(2008)
Chem. Biol. Drug. Des.
, vol.71
, Issue.6
, pp. 518-528
-
-
Stumpfe, D.1
Geppert, H.2
Bajorath, J.3
-
9
-
-
65249163404
-
Searching for targetselective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann, A.M.; Geppert, H.; Bajorath, J. Searching for targetselective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model., 2009; 49(3), 582-592.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.3
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
10
-
-
79952116048
-
Application of support vector machine-based ranking strategies to search for target-selective compounds
-
Wassermann, A.M.; Geppert, H.; Bajorath, J. Application of support vector machine-based ranking strategies to search for target-selective compounds. Methods. Mol. Biol., 2011; 672, 517-530.
-
(2011)
Methods. Mol. Biol.
, vol.672
, pp. 517-530
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
11
-
-
72949114936
-
Multi-assay-based structure- activity relationship models: Improving structure-activity relationship models by incorporating activity information from related targets
-
Ning, X.; Rangwala, H.; Karypis, G. Multi-assay-based structure- activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets. J. Chem. Inf. Model., 2009; 49(11), 2444-2456.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.11
, pp. 2444-2456
-
-
Ning, X.1
Rangwala, H.2
Karypis, G.3
-
12
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006; 313(5786), 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
13
-
-
84881039921
-
-
Manno-Lugano, Switzerland
-
Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. In: Flexible, high performance convolutional neural networks for image classification, Proceedings of the twenty-second international joint conference on artificial intelligence, Manno-Lugano, Switzerland, 2011; pp. 1237-1242.
-
(2011)
Flexible, high performance convolutional neural networks for image classification, Proceedings of the twenty-second international joint conference on artificial intelligence
, pp. 1237-1242
-
-
Cireşan, D.C.1
Meier, U.2
Masci, J.3
Gambardella, L.M.4
Schmidhuber, J.5
-
15
-
-
84868364183
-
Autoencoders, unsupervised learning, and deep architectures
-
Baldi, P. Autoencoders, unsupervised learning, and deep architectures. JMLR: Workshop and Conference Proceedings 27:37-50, 2012.
-
(2012)
JMLR: Workshop and Conference Proceedings
, vol.27
, pp. 37-50
-
-
Baldi, P.1
-
16
-
-
84867843700
-
Disentangling factors of variation for facial expression recognition
-
Rifai, Salah.; Bengio, Yoshua.; Courville, Aaron.; Vincent, Pascal.; Mirza, M. Disentangling factors of variation for facial expression recognition. Computer Vision - ECCV, 2012, 7577, 808-822.
-
(2012)
Computer Vision - ECCV
, vol.7577
, pp. 808-822
-
-
Rifai, S.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
Mirza, M.5
-
17
-
-
33749259827
-
Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
-
Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks, Proceeding ICML '06 Proceedings of the 23rd international conference on Machine learning, 2006, pp. 369-376.
-
(2006)
Proceeding ICML '06 Proceedings of the 23rd international conference on Machine learning
, pp. 369-376
-
-
Graves, A.1
Fernández, S.2
Gomez, F.3
Schmidhuber, J.4
-
18
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model., 2013; 53(7), 1563-1575.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
20
-
-
84055211743
-
Acoustic Modeling Using Deep Belief Networks
-
Mohamed, A.-R.; Dahl, G.E.; Hinton, G. Acoustic Modeling Using Deep Belief Networks. IEEE. Trans. Audio. Speech. Lang. Processing., 2012, 20(1), 14 - 22.
-
(2012)
IEEE. Trans. Audio. Speech. Lang. Processing.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.-R.1
Dahl, G.E.2
Hinton, G.3
-
21
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural. Comput., 2006; 18(7), 1527-1554.
-
(2006)
Neural. Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
22
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 2010; 11, 3371-3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
25
-
-
80053460450
-
Contractive Auto-Encoders: Explicit Invariance During Feature Extraction
-
Bellevue, WA, USA
-
th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
-
(2011)
th International Conference on Machine Learning
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
28
-
-
38849166405
-
-
Léon Bottou, Olivier Chapelle, Dennis DeCoste, Jason Weston, Ed.; MIT Press, Available at
-
Bengio, Y.; LeCun, Y. In: Large-Scale Kernel Machines; Léon Bottou, Olivier Chapelle, Dennis DeCoste, Jason Weston, Ed.; MIT Press, 2007; Vol. 34. Available at: http://www.iro.umontreal.ca/
-
(2007)
Large-Scale Kernel Machines
, vol.34
-
-
Bengio, Y.1
LeCun, Y.2
-
29
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Lee, H.; Largman, Y; Pham, P.; Ng, A.Y. Unsupervised feature learning for audio classification using convolutional deep belief networks. NIPS Proceedings, 2009.
-
(2009)
NIPS Proceedings
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.Y.4
-
30
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
ACM: Helsinki, Finland
-
Collobert, R. and J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, Proceedings of the 25th international conference on Machine learning, 2008; ACM: Helsinki, Finland; pp. 160-167.
-
(2008)
Proceedings of the 25th international conference on Machine learning
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
31
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
Lena, Di.; Nagata, P.K.; Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics, 2012; 28(19), 2449-2457.
-
(2012)
Bioinformatics
, vol.28
, Issue.19
, pp. 2449-2457
-
-
Lena, D.1
Nagata, P.K.2
Baldi, P.3
-
33
-
-
84870415234
-
Predicting protein residue-residue contacts using deep networks and boosting
-
Eickholt, J.; Cheng, J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics, 2012, 28(23), 3066-3072.
-
(2012)
Bioinformatics
, vol.28
, Issue.23
, pp. 3066-3072
-
-
Eickholt, J.1
Cheng, J.2
-
34
-
-
84885045537
-
Anatole. Machine learning of molecular electronic properties in chemical compound space
-
Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.; Tkatchenko, A.; Müller, K.-R.; Von Lilienfeld, O. Anatole. Machine learning of molecular electronic properties in chemical compound space. New. J. Phys., 2013, 15.
-
(2013)
New. J. Phys.
, pp. 15
-
-
Montavon, G.1
Rupp, M.2
Gobre, V.3
Vazquez-Mayagoitia, A.4
Hansen, K.5
Tkatchenko, A.6
Müller, K.-R.7
von Lilienfeld, O.8
-
35
-
-
84874545393
-
DNdisorder: Predicting protein disorder using boosting and deep networks
-
Eickholt, J. Cheng, J. DNdisorder: Predicting protein disorder using boosting and deep networks. BMC. Bioinformatics, 2013, 14.
-
(2013)
BMC. Bioinformatics
, pp. 14
-
-
Eickholt, J.1
Cheng, J.2
-
36
-
-
0031189914
-
Multitask Learning
-
Caruana, R. Multitask Learning. Mach. Learn., 1997; 28(1), 41-75.
-
(1997)
Mach. Learn.
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
38
-
-
34547982010
-
Multi-task learning for sequential data via iHMMs and the nested Dirichlet process
-
ACM: Corvalis, Oregon
-
Ni, K.; Carin, L.; Dunson, D. Multi-task learning for sequential data via iHMMs and the nested Dirichlet process, Proceedings of the 24th international conference on Machine learning, 2007, ACM: Corvalis, Oregon, pp. 689-696.
-
(2007)
Proceedings of the 24th international conference on Machine learning
, pp. 689-696
-
-
Ni, K.1
Carin, L.2
Dunson, D.3
-
39
-
-
84890545600
-
Multi-task learning in deep neural networks for improved phoneme recognition
-
Vancouver, BC, USA, May 26-31
-
Seltzer, M.L.; Droppo, J. Multi-task learning in deep neural networks for improved phoneme recognition. Proceedings in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference, Vancouver, BC, USA, May 26-31, 2013; pp. 6965 - 6969
-
(2013)
Proceedings in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
, pp. 6965-6969
-
-
Seltzer, M.L.1
Droppo, J.2
-
40
-
-
52749098733
-
Virtual screening of GPCRs: An in silico chemogenomics approach
-
Jacob, L.; Hoffmann, B.; Stoven, V.; Vert, J.P. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC. Bioinformatics., 2008, 9, 363.
-
(2008)
BMC. Bioinformatics.
, vol.9
, pp. 363
-
-
Jacob, L.1
Hoffmann, B.2
Stoven, V.3
Vert, J.P.4
-
41
-
-
73449112311
-
From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds
-
Peltason, L.; Hu, Y.; Bajorath, J. From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds. ChemMedChem., 2009, 4(11), 1864-1873
-
(2009)
ChemMedChem.
, vol.4
, Issue.11
, pp. 1864-1873
-
-
Peltason, L.1
Hu, Y.2
Bajorath, J.3
|