메뉴 건너뛰기




Volumn 12, Issue 1, 2016, Pages 5-14

Using deep learning for compound selectivity prediction

Author keywords

Compound selectivity; Deep belief networks; Multitask learning; Neural network

Indexed keywords

BAYESIAN NETWORKS; DEEP LEARNING;

EID: 84964091167     PISSN: 15734099     EISSN: 18756697     Source Type: Journal    
DOI: 10.2174/1573409912666160219113250     Document Type: Article
Times cited : (12)

References (41)
  • 1
    • 84858033532 scopus 로고    scopus 로고
    • Improved machine learning models for predicting selective compounds
    • Ning, X., Walters, M.; Karypisxr, G. Improved machine learning models for predicting selective compounds. J. Chem. Inf. Model., 2012; 52(1), 38-50.
    • (2012) J. Chem. Inf. Model. , vol.52 , Issue.1 , pp. 38-50
    • Ning, X.1    Walters, M.2    Karypisxr, G.3
  • 2
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: The next paradigm in drug discovery
    • Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008; 4(11), 682-690.
    • (2008) Nat. Chem. Biol. , vol.4 , Issue.11 , pp. 682-690
    • Hopkins, A.L.1
  • 4
    • 4644271084 scopus 로고    scopus 로고
    • Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia
    • Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug. Discov., 2004; 3(4), 353-359.
    • (2004) Nat. Rev. Drug. Discov. , vol.3 , Issue.4 , pp. 353-359
    • Roth, B.L.1    Sheffler, D.J.2    Kroeze, W.K.3
  • 6
    • 34447521097 scopus 로고
    • Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients
    • Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 1962; 194(4824), 178-180.
    • (1962) Nature , vol.194 , Issue.4824 , pp. 178-180
    • Hansch, C.1    Maloney, P.P.2    Fujita, T.3    Muir, R.M.4
  • 7
    • 34548168343 scopus 로고    scopus 로고
    • Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints
    • Vogt, I.; Stumpfe, D.; Ahmed, H.E.; Bajorath, J. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints. Chem. Biol. Drug. Des., 2007; 70(3), 195-205.
    • (2007) Chem. Biol. Drug. Des. , vol.70 , Issue.3 , pp. 195-205
    • Vogt, I.1    Stumpfe, D.2    Ahmed, H.E.3    Bajorath, J.4
  • 8
    • 43949101012 scopus 로고    scopus 로고
    • Methods for computer-aided chemical biology. Part 3: Analysis of structure-selectivity relationships through single- or dual-step selectivity searching and bayesian classification
    • Stumpfe, D.; Geppert, H.; Bajorath, J. Methods for computer-aided chemical biology. Part 3: Analysis of structure-selectivity relationships through single- or dual-step selectivity searching and bayesian classification. Chem. Biol. Drug. Des., 2008; 71(6), 518-528.
    • (2008) Chem. Biol. Drug. Des. , vol.71 , Issue.6 , pp. 518-528
    • Stumpfe, D.1    Geppert, H.2    Bajorath, J.3
  • 9
    • 65249163404 scopus 로고    scopus 로고
    • Searching for targetselective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann, A.M.; Geppert, H.; Bajorath, J. Searching for targetselective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model., 2009; 49(3), 582-592.
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.3 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 10
    • 79952116048 scopus 로고    scopus 로고
    • Application of support vector machine-based ranking strategies to search for target-selective compounds
    • Wassermann, A.M.; Geppert, H.; Bajorath, J. Application of support vector machine-based ranking strategies to search for target-selective compounds. Methods. Mol. Biol., 2011; 672, 517-530.
    • (2011) Methods. Mol. Biol. , vol.672 , pp. 517-530
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 11
    • 72949114936 scopus 로고    scopus 로고
    • Multi-assay-based structure- activity relationship models: Improving structure-activity relationship models by incorporating activity information from related targets
    • Ning, X.; Rangwala, H.; Karypis, G. Multi-assay-based structure- activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets. J. Chem. Inf. Model., 2009; 49(11), 2444-2456.
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.11 , pp. 2444-2456
    • Ning, X.1    Rangwala, H.2    Karypis, G.3
  • 12
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006; 313(5786), 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 84868364183 scopus 로고    scopus 로고
    • Autoencoders, unsupervised learning, and deep architectures
    • Baldi, P. Autoencoders, unsupervised learning, and deep architectures. JMLR: Workshop and Conference Proceedings 27:37-50, 2012.
    • (2012) JMLR: Workshop and Conference Proceedings , vol.27 , pp. 37-50
    • Baldi, P.1
  • 16
    • 84867843700 scopus 로고    scopus 로고
    • Disentangling factors of variation for facial expression recognition
    • Rifai, Salah.; Bengio, Yoshua.; Courville, Aaron.; Vincent, Pascal.; Mirza, M. Disentangling factors of variation for facial expression recognition. Computer Vision - ECCV, 2012, 7577, 808-822.
    • (2012) Computer Vision - ECCV , vol.7577 , pp. 808-822
    • Rifai, S.1    Bengio, Y.2    Courville, A.3    Vincent, P.4    Mirza, M.5
  • 18
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model., 2013; 53(7), 1563-1575.
    • (2013) J. Chem. Inf. Model. , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 21
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural. Comput., 2006; 18(7), 1527-1554.
    • (2006) Neural. Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 22
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 2010; 11, 3371-3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 28
    • 38849166405 scopus 로고    scopus 로고
    • Léon Bottou, Olivier Chapelle, Dennis DeCoste, Jason Weston, Ed.; MIT Press, Available at
    • Bengio, Y.; LeCun, Y. In: Large-Scale Kernel Machines; Léon Bottou, Olivier Chapelle, Dennis DeCoste, Jason Weston, Ed.; MIT Press, 2007; Vol. 34. Available at: http://www.iro.umontreal.ca/
    • (2007) Large-Scale Kernel Machines , vol.34
    • Bengio, Y.1    LeCun, Y.2
  • 29
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee, H.; Largman, Y; Pham, P.; Ng, A.Y. Unsupervised feature learning for audio classification using convolutional deep belief networks. NIPS Proceedings, 2009.
    • (2009) NIPS Proceedings
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.Y.4
  • 30
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • ACM: Helsinki, Finland
    • Collobert, R. and J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, Proceedings of the 25th international conference on Machine learning, 2008; ACM: Helsinki, Finland; pp. 160-167.
    • (2008) Proceedings of the 25th international conference on Machine learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 31
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Lena, Di.; Nagata, P.K.; Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics, 2012; 28(19), 2449-2457.
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2449-2457
    • Lena, D.1    Nagata, P.K.2    Baldi, P.3
  • 33
    • 84870415234 scopus 로고    scopus 로고
    • Predicting protein residue-residue contacts using deep networks and boosting
    • Eickholt, J.; Cheng, J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics, 2012, 28(23), 3066-3072.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 35
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: Predicting protein disorder using boosting and deep networks
    • Eickholt, J. Cheng, J. DNdisorder: Predicting protein disorder using boosting and deep networks. BMC. Bioinformatics, 2013, 14.
    • (2013) BMC. Bioinformatics , pp. 14
    • Eickholt, J.1    Cheng, J.2
  • 36
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Caruana, R. Multitask Learning. Mach. Learn., 1997; 28(1), 41-75.
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 40
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: An in silico chemogenomics approach
    • Jacob, L.; Hoffmann, B.; Stoven, V.; Vert, J.P. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC. Bioinformatics., 2008, 9, 363.
    • (2008) BMC. Bioinformatics. , vol.9 , pp. 363
    • Jacob, L.1    Hoffmann, B.2    Stoven, V.3    Vert, J.P.4
  • 41
    • 73449112311 scopus 로고    scopus 로고
    • From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds
    • Peltason, L.; Hu, Y.; Bajorath, J. From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds. ChemMedChem., 2009, 4(11), 1864-1873
    • (2009) ChemMedChem. , vol.4 , Issue.11 , pp. 1864-1873
    • Peltason, L.1    Hu, Y.2    Bajorath, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.