-
2
-
-
34249753618
-
Support-vector networks
-
Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
57349122015
-
Learning from labeled features using generalization expectation criteria
-
Druck, G., Mann, G., and McCallum, A. Learning from labeled features using generalization expectation criteria In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 595-602, 2008.
-
(2008)
Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
, pp. 595-602
-
-
Druck, G.1
Mann, G.2
McCallum, A.3
-
6
-
-
85156193010
-
Knowledge-based support vector machine classifiers
-
Fung, G., Mangasarian, O. L., and Shavlik, J. W. Knowledge-based support vector machine classifiers. In The Conference on Advances in Neural Information Processing Systems (NIPS), pp. 521-528, 2002.
-
(2002)
Conference on Advances in Neural Information Processing Systems (NIPS)
, pp. 521-528
-
-
Fung, G.1
Mangasarian, O.L.2
Shavlik, J.W.3
-
8
-
-
9444293384
-
Text classification by labeling words
-
Liu, B., Li, X., Lee, W. S., and Yu, P. S. Text classification by labeling words. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 425-430, 2004.
-
(2004)
Proceedings of the National Conference on Artificial Intelligence (AAAI)
, pp. 425-430
-
-
Liu, B.1
Li, X.2
Lee, W.S.3
Yu, P.S.4
-
10
-
-
70350645448
-
Sentiment analysis of blogs by combining lexical knowledge with text classification
-
Melville, P., Gryc, W., and Lawrence, R. D. Sentiment analysis of blogs by combining lexical knowledge with text classification. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 1275-1284, 2009.
-
(2009)
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 1275-1284
-
-
Melville, P.1
Gryc, W.2
Lawrence, R.D.3
-
14
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
van Hulse, J., Khoshgoftaar, T.M., and Napolitano, A. Experimental perspectives on learning from imbalanced data. In Proceedings of the International Conference on Machine Learning (ICML), pp. 935-942, 2007.
-
(2007)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 935-942
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
15
-
-
77956197516
-
Active learning for biomedical citation screening
-
ACM
-
Wallace, B. C., Small, K., Brodley, C. E., and Trikalinos, T. A. Active learning for biomedical citation screening. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 173-182. ACM, 2010.
-
(2010)
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 173-182
-
-
Wallace, B.C.1
Small, K.2
Brodley, C.E.3
Trikalinos, T.A.4
-
16
-
-
77957858975
-
Using "annotator rationales" to improve machine learning for text categorization
-
Zaidan, O., Eisner, J., and Piatko, C. Using "annotator rationales" to improve machine learning for text categorization. In Proceedings of the Annual Meeting of the North American Association of Computational Linguistics (NAACL), pp. 260-267, 2007.
-
(2007)
Proceedings of the Annual Meeting of the North American Association of Computational Linguistics (NAACL)
, pp. 260-267
-
-
Zaidan, O.1
Eisner, J.2
Piatko, C.3
|