메뉴 건너뛰기




Volumn WS-16-01 - WS-16-15, Issue , 2016, Pages 241-247

Active inference and dynamic Gaussian Bayesian networks for battery optimization in wireless sensor networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BIG DATA; BUDGET CONTROL; COGNITIVE SYSTEMS; COMPUTER GAMES; COMPUTER PROGRAMMING; COMPUTER SYSTEMS PROGRAMMING; DATA MINING; ELECTRIC BATTERIES; ELECTRIC POWER TRANSMISSION NETWORKS; ENERGY UTILIZATION; HYBRID SYSTEMS; POPULATION STATISTICS; SMART POWER GRIDS; SOLAR ENERGY; WIRELESS SENSOR NETWORKS;

EID: 85017364003     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (21)
  • 1
    • 84948980747 scopus 로고    scopus 로고
    • Approximation algorithms for maximum coverage and max cut with given sizes of parts
    • Springer
    • Ageev, A. A., and Sviridenko, M. I. 1999. Approximation algorithms for maximum coverage and max cut with given sizes of parts. In Integer Programming and Combinatorial Optimization. Springer. 17-30.
    • (1999) Integer Programming and Combinatorial Optimization , pp. 17-30
    • Ageev, A.A.1    Sviridenko, M.I.2
  • 3
    • 72449142164 scopus 로고    scopus 로고
    • Reflect and correct: A misclassification prediction approach to active inference
    • Bilgic, M., and Getoor, L. 2009. Reflect and correct: A misclassification prediction approach to active inference. ACM Transactions on Knowledge Discovery from Data 3(4):1-32.
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.4 , pp. 1-32
    • Bilgic, M.1    Getoor, L.2
  • 5
    • 80053415687 scopus 로고    scopus 로고
    • Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition
    • Bilgic, M., and Getoor, L. 2011. Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition. Journal of Artificial Intelligence Research (JAIR) 41:69-95.
    • (2011) Journal of Artificial Intelligence Research (JAIR) , vol.41 , pp. 69-95
    • Bilgic, M.1    Getoor, L.2
  • 6
    • 0031126237 scopus 로고    scopus 로고
    • Symbolic propagation and sensitivity analysis in Gaussian Bayesian networks with application to damage assessment
    • Castillo, E.; Gutiérrez, J.; Hadi, A.; and Solares, C. 1997. Symbolic propagation and sensitivity analysis in gaussian bayesian networks with application to damage assessment. Artificial Intelligence in Engineering 11(2):173-181.
    • (1997) Artificial Intelligence in Engineering , vol.11 , Issue.2 , pp. 173-181
    • Castillo, E.1    Gutiérrez, J.2    Hadi, A.3    Solares, C.4
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., and Herskovits, E. 1992. A bayesian method for the induction of probabilistic networks from data. Machine learning 9(4):309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 13
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97-109.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 84877776459 scopus 로고    scopus 로고
    • Optimal nonmyopic value of information in graphical models - Efficient algorithms and theoretical limits
    • Krause, A., and Guestrin, C. 2005b. Optimal nonmyopic value of information in graphical models - efficient algorithms and theoretical limits. In International Joint Conference on Artificial Intelligence, 1339-1345.
    • (2005) International Joint Conference on Artificial Intelligence , pp. 1339-1345
    • Krause, A.1    Guestrin, C.2
  • 19
    • 84873596567 scopus 로고    scopus 로고
    • Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
    • Settles, B. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool.
    • (2012) Active Learning
    • Settles, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.