메뉴 건너뛰기




Volumn , Issue , 2006, Pages 149-158

Active learning to maximize area under the ROC curve

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; CLOSEST SAMPLING; POSTERIOR PROBABILITY; ROC CURVE;

EID: 62449187253     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2006.12     Document Type: Conference Paper
Times cited : (32)

References (28)
  • 4
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker. Incorporating diversity in active learning with support vector machines. In Proc. of the 20th Int. Conf. on Machine Learning, pages 59-66, 2003.
    • (2003) Proc. of the 20th Int. Conf. on Machine Learning , pp. 59-66
    • Brinker, K.1
  • 6
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 8
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • C. Drummond and R. Holte. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1):95-130, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.2
  • 9
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3): 133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 11
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.J.2
  • 14
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest neighbor classifiers. Machine Learning, 54:125-152, 2004.
    • (2004) Machine Learning , vol.54 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 15
    • 0023276210 scopus 로고
    • Comparing the areas under more than two indepedent ROC curves
    • D. McClish. Comparing the areas under more than two indepedent ROC curves. Med. Decis. Making, 7:149-155, 1987.
    • (1987) Med. Decis. Making , vol.7 , pp. 149-155
    • McClish, D.1
  • 20
    • 4344573439 scopus 로고    scopus 로고
    • Convergence and application of online active sampling using orthogonal pillar vectors
    • J.-M. Park. Convergence and application of online active sampling using orthogonal pillar vectors. IEEE Trans, on Pattern Analysis and Machine Intelligence, 26(9): 1197-1207, 2004.
    • (2004) IEEE Trans, on Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1197-1207
    • Park, J.-M.1
  • 21
    • 33846571228 scopus 로고    scopus 로고
    • Optimising area under the ROC curve with SVMs
    • A. Rakotomamonjy. Optimising area under the ROC curve with SVMs. In ROCAI, pages 71-80, 2004.
    • (2004) ROCAI , pp. 71-80
    • Rakotomamonjy, A.1
  • 26
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • 2(Nov):45-66
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2(Nov):45-66, 2001.
    • (2001) Journal of Machine Learning Research
    • Tong, S.1    Koller, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.