-
2
-
-
72449174792
-
Document selection methodologies for efficient and effective learning-to-rank
-
ACM
-
J. A. Aslam, E. Kanoulas, V. Pavlu, S. Savev, and E. Yilmaz. Document selection methodologies for efficient and effective learning-to-rank. In SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 468-475. ACM, 2009.
-
(2009)
SIGIR '09: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 468-475
-
-
Aslam, J.A.1
Kanoulas, E.2
Pavlu, V.3
Savev, S.4
Yilmaz, E.5
-
6
-
-
36849036983
-
Extensions of Gaussian processes for ranking: Semi-supervised and active learning
-
W. Chu and Z. Ghahramani. Extensions of gaussian processes for ranking: semi-supervised and active learning. In Nips workshop on Learning to Rank, 2005.
-
(2005)
Nips Workshop on Learning to Rank
-
-
Chu, W.1
Ghahramani, Z.2
-
7
-
-
85153947869
-
Active learning with statistical models
-
G. Tesauro, D. Touretzky, and T. Leen, editors The MIT Press
-
D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages 705-712. The MIT Press, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 705-712
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
11
-
-
56449103935
-
Optimizing estimated loss reduction for active sampling in rank learning
-
New York, NY, USA ACM
-
P. Donmez and J. G. Carbonell. Optimizing estimated loss reduction for active sampling in rank learning. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 248-255, New York, NY, USA, 2008. ACM.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 248-255
-
-
Donmez, P.1
Carbonell, J.G.2
-
13
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
14
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
15
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
-
(2001)
Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.1
-
16
-
-
33845604373
-
Bootstrap prediction and Bayesian prediction under misspecified models
-
T. Fushiki. Bootstrap prediction and bayesian prediction under misspecified models. Bernoulli, 11(4):747-758, 2005.
-
(2005)
Bernoulli
, vol.11
, Issue.4
, pp. 747-758
-
-
Fushiki, T.1
-
17
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Smola, Bartlett, Schoelkopf, and Schuurmans, editors MIT Press, Cambridge, MA
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Smola, Bartlett, Schoelkopf, and Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
21
-
-
56449094442
-
Listwise approach to learning to rank: Theory and algorithm
-
New York, NY, USA ACM
-
F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank: theory and algorithm. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 1192-1199, New York, NY, USA, 2008. ACM.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 1192-1199
-
-
Xia, F.1
Liu, T.-Y.2
Wang, J.3
Zhang, W.4
Li, H.5
-
22
-
-
72449143174
-
Query sampling for ranking learning in web search
-
New York, NY, USA ACM
-
L. Yang, L. Wang, B. Geng, and X.-S. Hua. Query sampling for ranking learning in web search. In SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 754-755, New York, NY, USA, 2009. ACM.
-
(2009)
SIGIR '09: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 754-755
-
-
Yang, L.1
Wang, L.2
Geng, B.3
Hua, X.-S.4
-
23
-
-
72449142196
-
Deep versus shallow judgments in learning to rank
-
New York, NY, USA ACM
-
E. Yilmaz and S. Robertson. Deep versus shallow judgments in learning to rank. In SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 662-663, New York, NY, USA, 2009. ACM.
-
(2009)
SIGIR '09: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 662-663
-
-
Yilmaz, E.1
Robertson, S.2
-
25
-
-
85161963897
-
A general boosting method and its application to learning ranking functions for web search
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors
-
Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method and its application to learning ranking functions for web search. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1697-1704, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1697-1704
-
-
Zheng, Z.1
Zha, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
-
26
-
-
77956023532
-
A decision theoretic framework for implicit relevance feedback
-
O. Zoeter, N. Craswell, M. Taylor, J. Guiver, and E. Snelson. A decision theoretic framework for implicit relevance feedback. In NIPS Workshop on Machine learning for web search, 2007.
-
(2007)
NIPS Workshop on Machine Learning for Web Search
-
-
Zoeter, O.1
Craswell, N.2
Taylor, M.3
Guiver, J.4
Snelson, E.5
|