메뉴 건너뛰기




Volumn , Issue , 2009, Pages 81-90

Active learning by labeling features

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 77949519575     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1699510.1699522     Document Type: Conference Paper
Times cited : (139)

References (19)
  • 1
    • 80053165082 scopus 로고    scopus 로고
    • Alternating projections for learning with expectation constraints
    • Kedar Bellare, Gregory Druck, and Andrew McCallum. 2009. Alternating projections for learning with expectation constraints. In UAI.
    • (2009) UAI
    • Bellare, K.1    Druck, G.2    McCallum, A.3
  • 3
    • 57749120009 scopus 로고    scopus 로고
    • Guiding semi-supervision with constraint-driven learning
    • Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007. Guiding semi-supervision with constraint-driven learning. In ACL, pages 280-287.
    • (2007) ACL , pp. 280-287
    • Chang, M.-W.1    Ratinov, L.2    Roth, D.3
  • 4
    • 57349122015 scopus 로고    scopus 로고
    • Learning from labeled features using generalized expectation criteria
    • Gregory Druck, Gideon Mann, and Andrew McCallum. 2008. Learning from labeled features using generalized expectation criteria. In SIGIR.
    • (2008) SIGIR
    • Druck, G.1    Mann, G.2    McCallum, A.3
  • 5
    • 85162012703 scopus 로고    scopus 로고
    • Expectation maximization and posterior constraints
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • Joao Graça, Kuzman Ganchev, and Ben Taskar. 2008. Expectation maximization and posterior constraints. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press.
    • (2008) Advances in Neural Information Processing Systems , vol.20
    • Graça, J.1    Ganchev, K.2    Taskar, B.3
  • 6
    • 84859881704 scopus 로고    scopus 로고
    • Unsupervised learning of field segmentation models for information extraction
    • Trond Grenager, Dan Klein, and Christopher D. Manning. 2005. Unsupervised learning of field segmentation models for information extraction. In ACL.
    • (2005) ACL
    • Grenager, T.1    Klein, D.2    Manning, C.D.3
  • 7
    • 70049102734 scopus 로고    scopus 로고
    • Prototype-driven learning for sequence models
    • Aria Haghighi and Dan Klein. 2006. Prototype-driven learning for sequence models. In HTL-NAACL.
    • (2006) HTL-NAACL
    • Haghighi, A.1    Kle, D.2
  • 8
    • 84860537772 scopus 로고    scopus 로고
    • Semisupervised conditional random fields for improved sequence segmentation and labeling
    • Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuurmans. 2006. Semisupervised conditional random fields for improved sequence segmentation and labeling. In ACL, pages 209-216.
    • (2006) ACL , pp. 209-216
    • Jiao, F.1    Wang, S.2    Lee, C.-H.3    Greiner, R.4    Schuurmans, D.5
  • 9
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 10
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • New York, NY, USA. Springer-Verlag New York, Inc
    • David D. Lewis andWilliam A. Gale. 1994. A sequential algorithm for training text classifiers. In SIGIR, pages 3-12, New York, NY, USA. Springer-Verlag New York, Inc.
    • (1994) SIGIR , pp. 3-12
    • Lewis, D.D.1    Gale, W.A.2
  • 11
    • 71149098112 scopus 로고    scopus 로고
    • Learning from measurements in exponential families
    • Percy Liang, Michael I. Jordan, and Dan Klein. 2009. Learning from measurements in exponential families. In ICML.
    • (2009) ICML
    • Liang, P.1    Jordan, M.I.2    Kle, D.3
  • 12
    • 84859912771 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning of conditional random fields
    • Gideon Mann and Andrew McCallum. 2008. Generalized expectation criteria for semi-supervised learning of conditional random fields. In ACL.
    • (2008) ACL
    • Mann, G.1    McCallum, A.2
  • 14
    • 36448950134 scopus 로고    scopus 로고
    • An interactive algorithm for asking and incorporating feature feedback into support vector machines
    • Hema Raghavan and James Allan. 2007. An interactive algorithm for asking and incorporating feature feedback into support vector machines. In SIGIR, pages 79-86.
    • (2007) SIGIR , pp. 79-86
    • Raghavan, H.1    Allan, J.2
  • 15
    • 1942420675 scopus 로고    scopus 로고
    • Optimization with em and expectation-conjugate-gradient
    • Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. 2003. Optimization with em and expectation-conjugate-gradient. In ICML, pages 672-679.
    • (2003) ICML , pp. 672-679
    • Salakhutdinov, R.1    Roweis, S.2    Ghahramani, Z.3
  • 16
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • Burr Settles and Mark Craven. 2008. An analysis of active learning strategies for sequence labeling tasks. In EMNLP.
    • (2008) EMNLP
    • Settles, B.1    Craven, M.2
  • 17
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report 1648, University of Wisconsin-Madison
    • Burr Settles. 2009. Active learning literature survey. Technical Report 1648, University of Wisconsin-Madison.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 18
    • 71149105884 scopus 로고    scopus 로고
    • Uncertainty sampling and transductive experimental design for active dual supervision
    • Vikas Sindhwani, Prem Melville, and Richard D. Lawrence. 2009. Uncertainty sampling and transductive experimental design for active dual supervision. In ICML.
    • (2009) ICML
    • Sindhwani, V.1    Melville, P.2    Lawrence, R.D.3
  • 19
    • 85058225616 scopus 로고    scopus 로고
    • Multi-level active prediction of useful image annotations for recognition
    • Sudheendra Vijayanarasimhan and Kristen Grauman. 2008. Multi-level active prediction of useful image annotations for recognition. In NIPS.
    • (2008) NIPS
    • Vijayanarasimhan, S.1    Grauman, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.