-
1
-
-
80053165082
-
Alternating projections for learning with expectation constraints
-
Kedar Bellare, Gregory Druck, and Andrew McCallum. 2009. Alternating projections for learning with expectation constraints. In UAI.
-
(2009)
UAI
-
-
Bellare, K.1
Druck, G.2
McCallum, A.3
-
2
-
-
0141607824
-
Latent dirichlet allocation
-
David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 2003
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
Lafferty, J.4
-
3
-
-
57749120009
-
Guiding semi-supervision with constraint-driven learning
-
Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007. Guiding semi-supervision with constraint-driven learning. In ACL, pages 280-287.
-
(2007)
ACL
, pp. 280-287
-
-
Chang, M.-W.1
Ratinov, L.2
Roth, D.3
-
4
-
-
57349122015
-
Learning from labeled features using generalized expectation criteria
-
Gregory Druck, Gideon Mann, and Andrew McCallum. 2008. Learning from labeled features using generalized expectation criteria. In SIGIR.
-
(2008)
SIGIR
-
-
Druck, G.1
Mann, G.2
McCallum, A.3
-
5
-
-
85162012703
-
Expectation maximization and posterior constraints
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
-
Joao Graça, Kuzman Ganchev, and Ben Taskar. 2008. Expectation maximization and posterior constraints. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Graça, J.1
Ganchev, K.2
Taskar, B.3
-
6
-
-
84859881704
-
Unsupervised learning of field segmentation models for information extraction
-
Trond Grenager, Dan Klein, and Christopher D. Manning. 2005. Unsupervised learning of field segmentation models for information extraction. In ACL.
-
(2005)
ACL
-
-
Grenager, T.1
Klein, D.2
Manning, C.D.3
-
7
-
-
70049102734
-
Prototype-driven learning for sequence models
-
Aria Haghighi and Dan Klein. 2006. Prototype-driven learning for sequence models. In HTL-NAACL.
-
(2006)
HTL-NAACL
-
-
Haghighi, A.1
Kle, D.2
-
8
-
-
84860537772
-
Semisupervised conditional random fields for improved sequence segmentation and labeling
-
Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuurmans. 2006. Semisupervised conditional random fields for improved sequence segmentation and labeling. In ACL, pages 209-216.
-
(2006)
ACL
, pp. 209-216
-
-
Jiao, F.1
Wang, S.2
Lee, C.-H.3
Greiner, R.4
Schuurmans, D.5
-
9
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
10
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
New York, NY, USA. Springer-Verlag New York, Inc
-
David D. Lewis andWilliam A. Gale. 1994. A sequential algorithm for training text classifiers. In SIGIR, pages 3-12, New York, NY, USA. Springer-Verlag New York, Inc.
-
(1994)
SIGIR
, pp. 3-12
-
-
Lewis, D.D.1
Gale, W.A.2
-
11
-
-
71149098112
-
Learning from measurements in exponential families
-
Percy Liang, Michael I. Jordan, and Dan Klein. 2009. Learning from measurements in exponential families. In ICML.
-
(2009)
ICML
-
-
Liang, P.1
Jordan, M.I.2
Kle, D.3
-
12
-
-
84859912771
-
Generalized expectation criteria for semi-supervised learning of conditional random fields
-
Gideon Mann and Andrew McCallum. 2008. Generalized expectation criteria for semi-supervised learning of conditional random fields. In ACL.
-
(2008)
ACL
-
-
Mann, G.1
McCallum, A.2
-
13
-
-
36049014768
-
Hidden conditional random fields
-
October
-
A. Quattoni, S. Wang, L.-P Morency, M. Collins, and T. Darrell. 2007. Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1848-1852, October.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, pp. 1848-1852
-
-
Quattoni, A.1
Wang, S.2
Morency, L.-P.3
Collins, M.4
Darrell, T.5
-
14
-
-
36448950134
-
An interactive algorithm for asking and incorporating feature feedback into support vector machines
-
Hema Raghavan and James Allan. 2007. An interactive algorithm for asking and incorporating feature feedback into support vector machines. In SIGIR, pages 79-86.
-
(2007)
SIGIR
, pp. 79-86
-
-
Raghavan, H.1
Allan, J.2
-
15
-
-
1942420675
-
Optimization with em and expectation-conjugate-gradient
-
Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. 2003. Optimization with em and expectation-conjugate-gradient. In ICML, pages 672-679.
-
(2003)
ICML
, pp. 672-679
-
-
Salakhutdinov, R.1
Roweis, S.2
Ghahramani, Z.3
-
16
-
-
80053375448
-
An analysis of active learning strategies for sequence labeling tasks
-
Burr Settles and Mark Craven. 2008. An analysis of active learning strategies for sequence labeling tasks. In EMNLP.
-
(2008)
EMNLP
-
-
Settles, B.1
Craven, M.2
-
17
-
-
68949137209
-
-
Technical Report 1648, University of Wisconsin-Madison
-
Burr Settles. 2009. Active learning literature survey. Technical Report 1648, University of Wisconsin-Madison.
-
(2009)
Active Learning Literature Survey
-
-
Settles, B.1
-
18
-
-
71149105884
-
Uncertainty sampling and transductive experimental design for active dual supervision
-
Vikas Sindhwani, Prem Melville, and Richard D. Lawrence. 2009. Uncertainty sampling and transductive experimental design for active dual supervision. In ICML.
-
(2009)
ICML
-
-
Sindhwani, V.1
Melville, P.2
Lawrence, R.D.3
-
19
-
-
85058225616
-
Multi-level active prediction of useful image annotations for recognition
-
Sudheendra Vijayanarasimhan and Kristen Grauman. 2008. Multi-level active prediction of useful image annotations for recognition. In NIPS.
-
(2008)
NIPS
-
-
Vijayanarasimhan, S.1
Grauman, K.2
|