메뉴 건너뛰기




Volumn 9, Issue 12, 2016, Pages

Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting

Author keywords

Data decomposition; Electrical load forecasting; Generalized regression neural network; Genetic algorithm

Indexed keywords

ELECTRIC POWER PLANT LOADS; FORECASTING; GENETIC ALGORITHMS; NEURAL NETWORKS; RANDOM PROCESSES; TIME SERIES;

EID: 85012272132     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en9121050     Document Type: Article
Times cited : (24)

References (45)
  • 1
    • 84988028148 scopus 로고    scopus 로고
    • Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
    • Yang, Y.; Chen, Y.H.; Wang, Y.C.; Li, C.H.; Li, L. Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting. Appl. Soft Comput. 2015, 49, 663-675.
    • (2015) Appl. Soft Comput. , vol.49 , pp. 663-675
    • Yang, Y.1    Chen, Y.H.2    Wang, Y.C.3    Li, C.H.4    Li, L.5
  • 2
    • 84962263030 scopus 로고    scopus 로고
    • An ensemble approach for short-term load forecasting by extreme learning machine
    • Li, S.; Goel, L.; Wang, P. An ensemble approach for short-term load forecasting by extreme learning machine. Appl. Energy 2016, 170, 22-29.
    • (2016) Appl. Energy , vol.170 , pp. 22-29
    • Li, S.1    Goel, L.2    Wang, P.3
  • 3
    • 84963815349 scopus 로고    scopus 로고
    • Using the ensemble Kalman filter for electricity load forecasting and analysis
    • Takeda, H.; Tamura, Y.; Sato, S. Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 2016, 104, 184-198.
    • (2016) Energy , vol.104 , pp. 184-198
    • Takeda, H.1    Tamura, Y.2    Sato, S.3
  • 4
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • Xiao, L.Y.; Wang, J.Z.; Hou, R.; Wu, J. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 2015, 82, 524-549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.Y.1    Wang, J.Z.2    Hou, R.3    Wu, J.4
  • 5
    • 84955577214 scopus 로고    scopus 로고
    • Random vector functional link network for short-term electricity load demand forecasting
    • Ren, Y.; Suganthan, P.N.; Srikanth, N.; Amaratunga, G. Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 2016, 1, 1078-1093.
    • (2016) Inf. Sci. , vol.1 , pp. 1078-1093
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3    Amaratunga, G.4
  • 6
    • 84957805665 scopus 로고    scopus 로고
    • A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
    • Xiao, L.Y.; Shao, W.; Liang, T.L.; Wang, C. A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl. Energy 2016, 167, 135-153.
    • (2016) Appl. Energy , vol.167 , pp. 135-153
    • Xiao, L.Y.1    Shao, W.2    Liang, T.L.3    Wang, C.4
  • 7
    • 84980410056 scopus 로고    scopus 로고
    • Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
    • Xiao, L.Y.; Shao, W.; Wang, C.; Zhang, K.Q.; Lu, H.Y. Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting. Appl. Energy 2016, 180, 213-233.
    • (2016) Appl. Energy , vol.180 , pp. 213-233
    • Xiao, L.Y.1    Shao, W.2    Wang, C.3    Zhang, K.Q.4    Lu, H.Y.5
  • 8
    • 84994716124 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms
    • Jiang, P.; Ma, X.J. A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms. Appl. Math. Model. 2016, 40, 10631-10649.
    • (2016) Appl. Math. Model. , vol.40 , pp. 10631-10649
    • Jiang, P.1    Ma, X.J.2
  • 9
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008, 36, 37-44.
    • (2008) Energy Policy , vol.36 , pp. 37-44
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 10
    • 77957550483 scopus 로고    scopus 로고
    • Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
    • Chang, P.C.; Fan, C.Y.; Lin, J.J. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Electr. Power Syst. Res. 2011, 33, 17-27.
    • (2011) Electr. Power Syst. Res. , vol.33 , pp. 17-27
    • Chang, P.C.1    Fan, C.Y.2    Lin, J.J.3
  • 11
    • 79952448415 scopus 로고    scopus 로고
    • Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
    • Wang, J.Z.; Chi, D.Z.; Wu, J.; Lu, H.Y. Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Syst. Appl. 2011, 38, 19-29.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 19-29
    • Wang, J.Z.1    Chi, D.Z.2    Wu, J.3    Lu, H.Y.4
  • 12
    • 84871921831 scopus 로고    scopus 로고
    • A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems
    • Ghanbari, A.; Kazami, S.M.; Mehmanpazir, F.; Nakhostin, M.M. A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems. Knowl. Based Syst. 2013, 39, 194-206.
    • (2013) Knowl. Based Syst. , vol.39 , pp. 194-206
    • Ghanbari, A.1    Kazami, S.M.2    Mehmanpazir, F.3    Nakhostin, M.M.4
  • 13
    • 84964425002 scopus 로고    scopus 로고
    • An optimized grey model for annual power load forecasting
    • Zhao, H.R.; Guo, S. An optimized grey model for annual power load forecasting. Energy 2016, 107, 272-286.
    • (2016) Energy , vol.107 , pp. 272-286
    • Zhao, H.R.1    Guo, S.2
  • 14
    • 84977262118 scopus 로고    scopus 로고
    • Forecasting the natural gas demand in China using a self-adapting intelligent grey model
    • Zeng, B.; Li, C. Forecasting the natural gas demand in China using a self-adapting intelligent grey model. Energy 2016, 112, 810-825.
    • (2016) Energy , vol.112 , pp. 810-825
    • Zeng, B.1    Li, C.2
  • 15
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkeys electricity consumption using Support Vector Regression
    • Kavaklioglu, K. Modeling and prediction of Turkeys electricity consumption using Support Vector Regression. Appl. Energy 2011, 88, 68-75.
    • (2011) Appl. Energy , vol.88 , pp. 68-75
    • Kavaklioglu, K.1
  • 16
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand
    • Wang, J.Z.; Zhu, W.J.; Zhang, W.Y.; Sun, D.H. A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand. Energy Policy 2009, 37, 1-9.
    • (2009) Energy Policy , vol.37 , pp. 1-9
    • Wang, J.Z.1    Zhu, W.J.2    Zhang, W.Y.3    Sun, D.H.4
  • 17
    • 77949268921 scopus 로고    scopus 로고
    • Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach
    • Kucukali, S.; Baris, K. Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 2010, 38, 38-45.
    • (2010) Energy Policy , vol.38 , pp. 38-45
    • Kucukali, S.1    Baris, K.2
  • 18
    • 77955270910 scopus 로고    scopus 로고
    • Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
    • Nguyen, H.T.; Nabney, I.T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 2010, 35, 13-21.
    • (2010) Energy , vol.35 , pp. 13-21
    • Nguyen, H.T.1    Nabney, I.T.2
  • 20
    • 84979527749 scopus 로고    scopus 로고
    • A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system
    • Wang, J.Z.; Liu, F.; Song, Y.L.; Zhao, J. A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system. Appl. Soft Comput. 2016, 48, 281-297.
    • (2016) Appl. Soft Comput. , vol.48 , pp. 281-297
    • Wang, J.Z.1    Liu, F.2    Song, Y.L.3    Zhao, J.4
  • 21
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • Yu, F.; Xu, X.Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 2014, 134, 102-113.
    • (2014) Appl. Energy , vol.134 , pp. 102-113
    • Yu, F.1    Xu, X.Z.2
  • 22
    • 84877682431 scopus 로고    scopus 로고
    • Short-term load forecasting for microgrids based on artificial neural networks
    • Hernandez, L.; Baladron, C.; Aguiar, J.M. Short-term load forecasting for microgrids based on artificial neural networks. Energies 2013, 6, 1385-1408.
    • (2013) Energies , vol.6 , pp. 1385-1408
    • Hernandez, L.1    Baladron, C.2    Aguiar, J.M.3
  • 24
    • 33646406039 scopus 로고    scopus 로고
    • Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads
    • Pai, P.F. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads. Energy Convers. Manag. 2006, 47, 2283-2289.
    • (2006) Energy Convers. Manag. , vol.47 , pp. 2283-2289
    • Pai, P.F.1
  • 25
    • 84897036172 scopus 로고    scopus 로고
    • Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development
    • Liu, L.W.; Zong, H.J.; Zhao, E.D.; Chen, C.X.; Wang, J.Z. Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development. Appl. Energy 2014, 124, 199-212.
    • (2014) Appl. Energy , vol.124 , pp. 199-212
    • Liu, L.W.1    Zong, H.J.2    Zhao, E.D.3    Chen, C.X.4    Wang, J.Z.5
  • 26
    • 84922796172 scopus 로고    scopus 로고
    • Combined forecasting models for wind energy forecasting: A case stud in China
    • Xiao, L.; Wang, J.Z.; Dong, Y.; Wu, J. Combined forecasting models for wind energy forecasting: A case stud in China. Renew. Sustain. Energy Rev. 2015, 44, 271-288.
    • (2015) Renew. Sustain. Energy Rev. , vol.44 , pp. 271-288
    • Xiao, L.1    Wang, J.Z.2    Dong, Y.3    Wu, J.4
  • 27
    • 84903145112 scopus 로고    scopus 로고
    • Techniques of applying wavelet de-noising into a combined model for short-term load forecasting
    • Wang, J.J.; Wang, J.Z.; Li, Y.N.; Zhu, S.L.; Zhao, J. Techniques of applying wavelet de-noising into a combined model for short-term load forecasting. Int. J. Electr. Power 2014, 62, 816-824.
    • (2014) Int. J. Electr. Power , vol.62 , pp. 816-824
    • Wang, J.J.1    Wang, J.Z.2    Li, Y.N.3    Zhu, S.L.4    Zhao, J.5
  • 28
    • 84989811566 scopus 로고    scopus 로고
    • A hybrid wind power forecasting model based on data mining and wavelets analysis
    • Azimi, R.; Ghofrani, M.; Ghayekhloo, M. A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers. Manag. 2016, 127, 208-225.
    • (2016) Energy Convers. Manag. , vol.127 , pp. 208-225
    • Azimi, R.1    Ghofrani, M.2    Ghayekhloo, M.3
  • 29
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network model for time series forecasting
    • Khashei, M.; Bijari, M. An artificial neural network model for time series forecasting. Expert Syst. 2010, 37, 479-489.
    • (2010) Expert Syst. , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 30
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA
    • Shukur, O.B.; Lee, M.H. Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA. Renew. Energy 2015, 76, 637-647.
    • (2015) Renew. Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 31
    • 84859610654 scopus 로고    scopus 로고
    • Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm
    • Niu, D.; Shi, H.; Wu, D.D. Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm. Appl. Soft Comput. 2012, 12, 1822-1827.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 1822-1827
    • Niu, D.1    Shi, H.2    Wu, D.D.3
  • 32
    • 78049295934 scopus 로고    scopus 로고
    • Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting
    • Lu, C.J.; Wang, Y.W. Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. Int. J. Prod. Econ. 2010, 128, 603-613.
    • (2010) Int. J. Prod. Econ. , vol.128 , pp. 603-613
    • Lu, C.J.1    Wang, Y.W.2
  • 33
    • 84975869372 scopus 로고    scopus 로고
    • Current status of wind energy forecasting and a hybrid method for hourly predictions
    • Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362-371.
    • (2016) Energy Convers. Manag. , vol.123 , pp. 362-371
    • Okumus, I.1    Dinler, A.2
  • 34
    • 77955322938 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
    • Che, J.; Wang, J. Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling. Energy Convers. Manag. 2010, 51, 1911-1917.
    • (2010) Energy Convers. Manag. , vol.51 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 35
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • Meng, A.B.; Ge, J.F.; Yin, H.; Chen, S.Z. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 2016, 114, 75-88.
    • (2016) Energy Convers. Manag. , vol.114 , pp. 75-88
    • Meng, A.B.1    Ge, J.F.2    Yin, H.3    Chen, S.Z.4
  • 37
    • 84862249888 scopus 로고    scopus 로고
    • Optimization models based on GM (1,1) and seasonal fluctuation for electricity demand forecasting
    • Wang, J.Z.; Ma, X.L.; Wu, J.; Dong, Y. Optimization models based on GM (1,1) and seasonal fluctuation for electricity demand forecasting. Int. J. Electr. Power 2012, 43, 109-117.
    • (2012) Int. J. Electr. Power , vol.43 , pp. 109-117
    • Wang, J.Z.1    Ma, X.L.2    Wu, J.3    Dong, Y.4
  • 38
    • 79959733948 scopus 로고    scopus 로고
    • A case study on a hybrid wind speed forecasting method using BP neural network
    • Guo, Z.H.; Wu, J.; Lu, H.Y.; Wang, J.Z. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl. Based Syst. 2011, 2, 1048-1056.
    • (2011) Knowl. Based Syst. , vol.2 , pp. 1048-1056
    • Guo, Z.H.1    Wu, J.2    Lu, H.Y.3    Wang, J.Z.4
  • 39
    • 84962856844 scopus 로고    scopus 로고
    • Hybridizing DEMD and quantum PSO with SVR in electric load forecasting
    • Peng, L.L.; Fan, G.F.; Huang, M.L.; Hong, W.C. Hybridizing DEMD and quantum PSO with SVR in electric load forecasting. Energies 2016, 9.
    • (2016) Energies , vol.9
    • Peng, L.L.1    Fan, G.F.2    Huang, M.L.3    Hong, W.C.4
  • 40
    • 84959358902 scopus 로고    scopus 로고
    • Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression
    • Fan, G.F.; Peng, L.L.; Hong, W.C.; Sun, F. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 2016, 173, 958-970.
    • (2016) Neurocomputing , vol.173 , pp. 958-970
    • Fan, G.F.1    Peng, L.L.2    Hong, W.C.3    Sun, F.4
  • 41
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
    • Liu, H.; Tian, H.Q.; Liang, X.F.; Li, Y.F. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 2015, 83, 1066-1075.
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.Q.2    Liang, X.F.3    Li, Y.F.4
  • 43
    • 84919756181 scopus 로고    scopus 로고
    • A rolling grey model optimized by particle swarm optimization in economic prediction
    • Liu, L.; Wang, Q.R.; Wang, J.Z.; Liu, M. A rolling grey model optimized by particle swarm optimization in economic prediction. Comput. Intell. 2014, 32, 391-419.
    • (2014) Comput. Intell. , vol.32 , pp. 391-419
    • Liu, L.1    Wang, Q.R.2    Wang, J.Z.3    Liu, M.4
  • 44
    • 79551521470 scopus 로고    scopus 로고
    • An efficient approach for electrical load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherical ARTMAP network) neural network
    • Yuan, C.; Wang, J.Z.; Tang, Y.; Yang, Y.C. An efficient approach for electrical load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherical ARTMAP network) neural network. Energy 2011, 36, 1340-1350.
    • (2011) Energy , vol.36 , pp. 1340-1350
    • Yuan, C.1    Wang, J.Z.2    Tang, Y.3    Yang, Y.C.4
  • 45
    • 84867745784 scopus 로고    scopus 로고
    • A hybrid intelligent algorithm based short-term load forecasting approach
    • Hooshmand, R.A.; Amooshahi, H.; Parastegari, M. A hybrid intelligent algorithm based short-term load forecasting approach. Int. J. Electr. Power 2013, 45, 313-324.
    • (2013) Int. J. Electr. Power , vol.45 , pp. 313-324
    • Hooshmand, R.A.1    Amooshahi, H.2    Parastegari, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.