-
1
-
-
0022215834
-
Comparative Models for Electrical Load Forecasting
-
[1] Bunn, D., Comparative Models for Electrical Load Forecasting. 1985.
-
(1985)
-
-
Bunn, D.1
-
2
-
-
84926193230
-
A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
-
[2] Xiao, L., Wang, J., Hou, R., et al. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82 (2015), 524–549.
-
(2015)
Energy
, vol.82
, pp. 524-549
-
-
Xiao, L.1
Wang, J.2
Hou, R.3
-
3
-
-
77956261937
-
Functional clustering and linear regression for peak load forecasting
-
[3] Goia, A., May, C., Fusai, G., Functional clustering and linear regression for peak load forecasting. Int. J. Forecast. 26:4 (2010), 700–711.
-
(2010)
Int. J. Forecast.
, vol.26
, Issue.4
, pp. 700-711
-
-
Goia, A.1
May, C.2
Fusai, G.3
-
4
-
-
84869023310
-
Linear regression models to forecast electricity consumption in Italy
-
[4] Bianco, V., Manca, O., Nardini, S., Linear regression models to forecast electricity consumption in Italy. Energy Sources B 8:1 (2013), 86–93.
-
(2013)
Energy Sources B
, vol.8
, Issue.1
, pp. 86-93
-
-
Bianco, V.1
Manca, O.2
Nardini, S.3
-
5
-
-
68449093602
-
Electricity consumption forecasting in Italy using linear regression models
-
[5] Bianco, V., Manca, O., Nardini, S., Electricity consumption forecasting in Italy using linear regression models. Energy 34:9 (2009), 1413–1421.
-
(2009)
Energy
, vol.34
, Issue.9
, pp. 1413-1421
-
-
Bianco, V.1
Manca, O.2
Nardini, S.3
-
6
-
-
40849100055
-
A granular time series approach to long-term forecasting and trend forecasting
-
[6] Dong, R., Pedrycz, W., A granular time series approach to long-term forecasting and trend forecasting. Physica A 387:13 (2008), 3253–3270.
-
(2008)
Physica A
, vol.387
, Issue.13
, pp. 3253-3270
-
-
Dong, R.1
Pedrycz, W.2
-
7
-
-
33845416969
-
Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
-
[7] Erdogdu, E., Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey. Energy policy 35:2 (2007), 1129–1146.
-
(2007)
Energy policy
, vol.35
, Issue.2
, pp. 1129-1146
-
-
Erdogdu, E.1
-
8
-
-
84865024300
-
Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
-
[8] Wang, Y., Wang, J., Zhao, G., et al. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 48 (2012), 284–294.
-
(2012)
Energy Policy
, vol.48
, pp. 284-294
-
-
Wang, Y.1
Wang, J.2
Zhao, G.3
-
9
-
-
84864290302
-
Interval type-2 fuzzy logic systems for load forecasting: a comparative study
-
[9] Khosravi, A., Nahavandi, S., Creighton, D., et al. Interval type-2 fuzzy logic systems for load forecasting: a comparative study. IEEE Trans. Power Syst. 27:3 (2012), 1274–1282.
-
(2012)
IEEE Trans. Power Syst.
, vol.27
, Issue.3
, pp. 1274-1282
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
-
10
-
-
77949268921
-
Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach
-
[10] Kucukali, S., Baris, K., Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 38:5 (2010), 2438–2445.
-
(2010)
Energy Policy
, vol.38
, Issue.5
, pp. 2438-2445
-
-
Kucukali, S.1
Baris, K.2
-
11
-
-
0029539588
-
Building a fuzzy expert system for electric load forecasting using a hybrid neural network
-
[11] Dash, P.K., Liew, A.C., Rahman, S., et al. Building a fuzzy expert system for electric load forecasting using a hybrid neural network. Expert Syst. Appl. 9:3 (1995), 407–421.
-
(1995)
Expert Syst. Appl.
, vol.9
, Issue.3
, pp. 407-421
-
-
Dash, P.K.1
Liew, A.C.2
Rahman, S.3
-
12
-
-
0008049871
-
Hybrid expert system for aiding dispatchers on bulk power systems restoration
-
[12] Yongli, Z., Hogg, B.W., Zhang, W.Q., et al. Hybrid expert system for aiding dispatchers on bulk power systems restoration. Int. J. Electr. Power Energy Syst. 16:4 (1994), 259–268.
-
(1994)
Int. J. Electr. Power Energy Syst.
, vol.16
, Issue.4
, pp. 259-268
-
-
Yongli, Z.1
Hogg, B.W.2
Zhang, W.Q.3
-
13
-
-
33746839289
-
A trigonometric grey prediction approach to forecasting electricity demand
-
[13] Zhou, P., Ang, B.W., Poh, K.L., A trigonometric grey prediction approach to forecasting electricity demand. Energy 31:14 (2006), 2839–2847.
-
(2006)
Energy
, vol.31
, Issue.14
, pp. 2839-2847
-
-
Zhou, P.1
Ang, B.W.2
Poh, K.L.3
-
14
-
-
34250208764
-
Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
-
[14] Akay, D., Atak, M., Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32:9 (2007), 1670–1675.
-
(2007)
Energy
, vol.32
, Issue.9
, pp. 1670-1675
-
-
Akay, D.1
Atak, M.2
-
15
-
-
80052807923
-
Forecasting electricity demand in Thailand with an artificial neural network approach
-
[15] Kandananond, K., Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 4:8 (2011), 1246–1257.
-
(2011)
Energies
, vol.4
, Issue.8
, pp. 1246-1257
-
-
Kandananond, K.1
-
16
-
-
20744444912
-
Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
-
[16] Plumb, A.P., Rowe, R.C., York, P., et al. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J. Pharm. Sci. 25:4 (2005), 395–405.
-
(2005)
Eur. J. Pharm. Sci.
, vol.25
, Issue.4
, pp. 395-405
-
-
Plumb, A.P.1
Rowe, R.C.2
York, P.3
-
17
-
-
36148953966
-
Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
-
[17] Al-Alawi, S.M., Abdul-Wahab, S.A., Bakheit, C.S., Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 23:4 (2008), 396–403.
-
(2008)
Environ. Model. Softw.
, vol.23
, Issue.4
, pp. 396-403
-
-
Al-Alawi, S.M.1
Abdul-Wahab, S.A.2
Bakheit, C.S.3
-
18
-
-
65649147967
-
A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
-
[18] Azadeh, A., Saberi, M., Gitiforouz, A., et al. A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation. Expert Syst. Appl. 36:8 (2009), 11108–11117.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.8
, pp. 11108-11117
-
-
Azadeh, A.1
Saberi, M.2
Gitiforouz, A.3
-
19
-
-
58349088285
-
Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
-
[19] Khajeh, A., Modarress, H., Rezaee, B., Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36:3 (2009), 5728–5732.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.3
, pp. 5728-5732
-
-
Khajeh, A.1
Modarress, H.2
Rezaee, B.3
-
20
-
-
67349169799
-
Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent
-
[20] Pai, T.Y., Wan, T.J., Hsu, S.T., et al. Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Comput. Chem. Eng. 33:7 (2009), 1272–1278.
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.7
, pp. 1272-1278
-
-
Pai, T.Y.1
Wan, T.J.2
Hsu, S.T.3
-
21
-
-
53849110638
-
BP neural network with rough set for short term load forecasting
-
[21] Xiao, Z., Ye, S.J., Zhong, B., et al. BP neural network with rough set for short term load forecasting. Expert Syst. Appl. 36:1 (2009), 273–279.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.1
, pp. 273-279
-
-
Xiao, Z.1
Ye, S.J.2
Zhong, B.3
-
22
-
-
84877670626
-
Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity
-
[22] Azwadi, C.S.N., Zeinali, M., Safdari, A., et al. Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity. Numer. Heat Transf. A 63:12 (2013), 906–920.
-
(2013)
Numer. Heat Transf. A
, vol.63
, Issue.12
, pp. 906-920
-
-
Azwadi, C.S.N.1
Zeinali, M.2
Safdari, A.3
-
23
-
-
0014629731
-
The combination of forecasts
-
[23] Bates, John M., Granger, Clive W.J., The combination of forecasts. J. Oper. Res. Soc. 20:4 (1969), 451–468.
-
(1969)
J. Oper. Res. Soc.
, vol.20
, Issue.4
, pp. 451-468
-
-
Bates, J.M.1
Granger, C.W.J.2
-
24
-
-
84888287824
-
Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
-
[24] Xiong, T., Bao, Y., Hu, Z., Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge Based Syst. 55 (2014), 87–100.
-
(2014)
Knowledge Based Syst.
, vol.55
, pp. 87-100
-
-
Xiong, T.1
Bao, Y.2
Hu, Z.3
-
25
-
-
70350162324
-
A hybrid MPSO-BP structure adaptive algorithm for RBFNs
-
[25] Yu, S., Zhu, K., Gao, S., A hybrid MPSO-BP structure adaptive algorithm for RBFNs. Neural Comput. Appl. 18:7 (2009), 769–779.
-
(2009)
Neural Comput. Appl.
, vol.18
, Issue.7
, pp. 769-779
-
-
Yu, S.1
Zhu, K.2
Gao, S.3
-
26
-
-
77955173218
-
Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
-
[26] Tan, Z., Zhang, J., Wang, J., et al. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl. Energy 87:11 (2010), 3606–3610.
-
(2010)
Appl. Energy
, vol.87
, Issue.11
, pp. 3606-3610
-
-
Tan, Z.1
Zhang, J.2
Wang, J.3
-
27
-
-
84955489089
-
Reliability forecasting models for electrical distribution systems considering component failures and planned outages
-
[27] Xie, K., Zhang, H., Singh, C., Reliability forecasting models for electrical distribution systems considering component failures and planned outages. Int. J. Electr. Power Energy Syst. 79 (2016), 228–234.
-
(2016)
Int. J. Electr. Power Energy Syst.
, vol.79
, pp. 228-234
-
-
Xie, K.1
Zhang, H.2
Singh, C.3
-
28
-
-
56449117278
-
A modified backpropagation learning algorithm with added emotional coefficients
-
[28] Khashman, A., A modified backpropagation learning algorithm with added emotional coefficients. IEEE Trans. Neural Netw. 19:11 (2008), 1896–1909.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.11
, pp. 1896-1909
-
-
Khashman, A.1
-
29
-
-
0021608723
-
Generation of autocorrelated wind speeds for wind energy conversion system studies
-
[29] Blanchard, M., Desrochers, G., Generation of autocorrelated wind speeds for wind energy conversion system studies. Sol. Energy 33:6 (1984), 571–579.
-
(1984)
Sol. Energy
, vol.33
, Issue.6
, pp. 571-579
-
-
Blanchard, M.1
Desrochers, G.2
-
30
-
-
0007087843
-
Forecasting economic processes
-
[30] Clements, M.P., Hendry, D.F., Forecasting economic processes. Int. J. Forecast. 14:1 (1998), 111–131.
-
(1998)
Int. J. Forecast.
, vol.14
, Issue.1
, pp. 111-131
-
-
Clements, M.P.1
Hendry, D.F.2
-
31
-
-
70350165286
-
Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan
-
[31] Liang, Y.H., Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan. Neural Comput. Appl. 18:7 (2009), 833–841.
-
(2009)
Neural Comput. Appl.
, vol.18
, Issue.7
, pp. 833-841
-
-
Liang, Y.H.1
-
32
-
-
67650333848
-
Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model
-
[32] Koutroumanidis, T., Ioannou, K., Arabatzis, G., Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model. Energy Policy 37:9 (2009), 3627–3634.
-
(2009)
Energy Policy
, vol.37
, Issue.9
, pp. 3627-3634
-
-
Koutroumanidis, T.1
Ioannou, K.2
Arabatzis, G.3
-
33
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
[33] Kavasseri, R.G., Seetharaman, K., Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 34:5 (2009), 1388–1393.
-
(2009)
Renew. Energy
, vol.34
, Issue.5
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
34
-
-
84859215386
-
Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties
-
[34] Petković, D., Issa, M., Pavlović, N.D., et al. Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39:10 (2012), 9477–9482.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.10
, pp. 9477-9482
-
-
Petković, D.1
Issa, M.2
Pavlović, N.D.3
-
35
-
-
79960851974
-
Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia
-
[35] El-Shafie, A., Jaafer, O., Akrami, S.A., Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia. Int. J. Phys. Sci. 6:12 (2011), 2875–2888.
-
(2011)
Int. J. Phys. Sci.
, vol.6
, Issue.12
, pp. 2875-2888
-
-
El-Shafie, A.1
Jaafer, O.2
Akrami, S.A.3
-
36
-
-
58349088285
-
Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
-
[36] Khajeh, A., Modarress, H., Rezaee, B., Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36:3 (2009), 5728–5732.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.3
, pp. 5728-5732
-
-
Khajeh, A.1
Modarress, H.2
Rezaee, B.3
-
37
-
-
84858379971
-
Research on the forecast model of electricity power industry loan based on GA-BP neural network
-
[37] Ke, L., Wenyan, G., Xiaoliu, S., et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network. Energy Procedia 14 (2012), 1918–1924.
-
(2012)
Energy Procedia
, vol.14
, pp. 1918-1924
-
-
Ke, L.1
Wenyan, G.2
Xiaoliu, S.3
-
38
-
-
79952439726
-
Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm
-
[38] Wang, J., Zhu, S., Zhao, W., et al. Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm. Expert Syst. Appl. 38:7 (2011), 8151–8158.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.7
, pp. 8151-8158
-
-
Wang, J.1
Zhu, S.2
Zhao, W.3
-
39
-
-
84875245118
-
Efficient ant colony optimization for image feature selection
-
[39] Chen, B., Chen, L., Chen, Y., Efficient ant colony optimization for image feature selection. Signal Process. 93:6 (2013), 1566–1576.
-
(2013)
Signal Process.
, vol.93
, Issue.6
, pp. 1566-1576
-
-
Chen, B.1
Chen, L.2
Chen, Y.3
-
40
-
-
44449103194
-
Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
-
[40] Azadeh, A., Ghaderi, S.F., Sohrabkhani, S., Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Convers. Manage. 49:8 (2008), 2272–2278.
-
(2008)
Energy Convers. Manage.
, vol.49
, Issue.8
, pp. 2272-2278
-
-
Azadeh, A.1
Ghaderi, S.F.2
Sohrabkhani, S.3
-
41
-
-
84871900799
-
A comprehensive foundation
-
[41] Haykin, S., Network, N., A comprehensive foundation. Neural Netw., 2004, 2004, 2.
-
(2004)
Neural Netw.
, vol.2004
, pp. 2
-
-
Haykin, S.1
Network, N.2
-
42
-
-
77950516820
-
A hybrid neural network and ARIMA model for water quality time series prediction
-
[42] Faruk, D.Ö., A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 23:4 (2010), 586–594.
-
(2010)
Eng. Appl. Artif. Intell.
, vol.23
, Issue.4
, pp. 586-594
-
-
Faruk, D.Ö.1
-
43
-
-
0026925677
-
Self-learning fuzzy controllers based on temporal backpropagation[
-
[43] Jang, J.S.R., Self-learning fuzzy controllers based on temporal backpropagation[. IEEE Trans. Neural Netw. 3:5 (1992), 714–723.
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.5
, pp. 714-723
-
-
Jang, J.S.R.1
-
44
-
-
0043065381
-
Using fuzzy neural network approach to estimate contractors’ markup
-
[44] Liu, M., Ling, Y.Y., Using fuzzy neural network approach to estimate contractors’ markup. Build. Environ. 38:11 (2003), 1303–1308.
-
(2003)
Build. Environ.
, vol.38
, Issue.11
, pp. 1303-1308
-
-
Liu, M.1
Ling, Y.Y.2
-
45
-
-
70349505264
-
Time Series Analysis: Forecasting and Control
-
John Wiley & Sons
-
[45] Box, G.E.P., Jenkins, G.M., Reinsel, G.C.et al., Time Series Analysis: Forecasting and Control. 2015, John Wiley & Sons.
-
(2015)
-
-
Box, G.E.P.1
Jenkins, G.M.2
Reinsel, G.C.E.A.3
-
46
-
-
0036140323
-
Combining neural network model with seasonal time series ARIMA model
-
[46] Tseng, F.M., Yu, H.C., Tzeng, G.H., Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Change 69:1 (2002), 71–87.
-
(2002)
Technol. Forecast. Soc. Change
, vol.69
, Issue.1
, pp. 71-87
-
-
Tseng, F.M.1
Yu, H.C.2
Tzeng, G.H.3
-
47
-
-
0003853519
-
Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces
-
ICSI Berkeley
-
[47] Storn, R., Price, K., Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. 1995, ICSI, Berkeley.
-
(1995)
-
-
Storn, R.1
Price, K.2
-
48
-
-
40249116814
-
A new particle swarm optimization for the open shop scheduling problem
-
[48] Sha, D.Y., Hsu, C.Y., A new particle swarm optimization for the open shop scheduling problem. Comput. Oper. Res. 35:10 (2008), 3243–3261.
-
(2008)
Comput. Oper. Res.
, vol.35
, Issue.10
, pp. 3243-3261
-
-
Sha, D.Y.1
Hsu, C.Y.2
-
49
-
-
68849116258
-
Optimal power flow using differential evolution algorithm
-
[49] El Ela, A.A.A., Abido, M.A., Spea, S.R., Optimal power flow using differential evolution algorithm. Electr. Eng. 91:2 (2009), 69–78.
-
(2009)
Electr. Eng.
, vol.91
, Issue.2
, pp. 69-78
-
-
El Ela, A.A.A.1
Abido, M.A.2
Spea, S.R.3
-
50
-
-
34249852438
-
Differential evolution strategies for optimal design of shell-and-tube heat exchangers
-
[50] Babu, B.V., Munawar, S.A., Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 62:14 (2007), 3720–3739.
-
(2007)
Chem. Eng. Sci.
, vol.62
, Issue.14
, pp. 3720-3739
-
-
Babu, B.V.1
Munawar, S.A.2
-
51
-
-
75349086823
-
Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor
-
[51] Khademi, M.H., Rahimpour, M.R., Jahanmiri, A., Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydrogen Energy 35:5 (2010), 1936–1950.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, Issue.5
, pp. 1936-1950
-
-
Khademi, M.H.1
Rahimpour, M.R.2
Jahanmiri, A.3
-
52
-
-
0342505598
-
Combining forecasts: the end of the beginning or the beginning of the end?
-
[52] Armstrong, J.S., Combining forecasts: the end of the beginning or the beginning of the end?. Int. J. Forecast. 5:4 (1989), 585–588.
-
(1989)
Int. J. Forecast.
, vol.5
, Issue.4
, pp. 585-588
-
-
Armstrong, J.S.1
-
53
-
-
77950096109
-
Forecasting with limited data: combining ARIMA and diffusion models
-
[53] Christodoulos, C., Michalakelis, C., Varoutas, D., Forecasting with limited data: combining ARIMA and diffusion models. Technol. Forecast. Soc. Change 77:4 (2010), 558–565.
-
(2010)
Technol. Forecast. Soc. Change
, vol.77
, Issue.4
, pp. 558-565
-
-
Christodoulos, C.1
Michalakelis, C.2
Varoutas, D.3
-
54
-
-
0023312713
-
Combination of forecasts: an extension
-
[54] Gupta, S., Wilton, P.C., Combination of forecasts: an extension. Manage. Sci. 33:3 (1987), 356–372.
-
(1987)
Manage. Sci.
, vol.33
, Issue.3
, pp. 356-372
-
-
Gupta, S.1
Wilton, P.C.2
-
55
-
-
84928213604
-
A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting
-
[55] Chen, Y., Yang, Y., Liu, C., et al. A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting. Appl. Math. Model. 39:9 (2015), 2617–2632.
-
(2015)
Appl. Math. Model.
, vol.39
, Issue.9
, pp. 2617-2632
-
-
Chen, Y.1
Yang, Y.2
Liu, C.3
|