메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 663-675

Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting

Author keywords

ANFIS; BP; Combined forecasting method; DE; diff SARIMA; Electricity demand forecasting

Indexed keywords

BACKPROPAGATION; ELECTRIC POWER UTILIZATION; ENERGY RESOURCES; EVOLUTIONARY ALGORITHMS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; OPTIMIZATION;

EID: 84988028148     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.07.053     Document Type: Review
Times cited : (147)

References (55)
  • 1
    • 0022215834 scopus 로고
    • Comparative Models for Electrical Load Forecasting
    • [1] Bunn, D., Comparative Models for Electrical Load Forecasting. 1985.
    • (1985)
    • Bunn, D.1
  • 2
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • [2] Xiao, L., Wang, J., Hou, R., et al. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82 (2015), 524–549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3
  • 3
    • 77956261937 scopus 로고    scopus 로고
    • Functional clustering and linear regression for peak load forecasting
    • [3] Goia, A., May, C., Fusai, G., Functional clustering and linear regression for peak load forecasting. Int. J. Forecast. 26:4 (2010), 700–711.
    • (2010) Int. J. Forecast. , vol.26 , Issue.4 , pp. 700-711
    • Goia, A.1    May, C.2    Fusai, G.3
  • 4
    • 84869023310 scopus 로고    scopus 로고
    • Linear regression models to forecast electricity consumption in Italy
    • [4] Bianco, V., Manca, O., Nardini, S., Linear regression models to forecast electricity consumption in Italy. Energy Sources B 8:1 (2013), 86–93.
    • (2013) Energy Sources B , vol.8 , Issue.1 , pp. 86-93
    • Bianco, V.1    Manca, O.2    Nardini, S.3
  • 5
    • 68449093602 scopus 로고    scopus 로고
    • Electricity consumption forecasting in Italy using linear regression models
    • [5] Bianco, V., Manca, O., Nardini, S., Electricity consumption forecasting in Italy using linear regression models. Energy 34:9 (2009), 1413–1421.
    • (2009) Energy , vol.34 , Issue.9 , pp. 1413-1421
    • Bianco, V.1    Manca, O.2    Nardini, S.3
  • 6
    • 40849100055 scopus 로고    scopus 로고
    • A granular time series approach to long-term forecasting and trend forecasting
    • [6] Dong, R., Pedrycz, W., A granular time series approach to long-term forecasting and trend forecasting. Physica A 387:13 (2008), 3253–3270.
    • (2008) Physica A , vol.387 , Issue.13 , pp. 3253-3270
    • Dong, R.1    Pedrycz, W.2
  • 7
    • 33845416969 scopus 로고    scopus 로고
    • Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
    • [7] Erdogdu, E., Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey. Energy policy 35:2 (2007), 1129–1146.
    • (2007) Energy policy , vol.35 , Issue.2 , pp. 1129-1146
    • Erdogdu, E.1
  • 8
    • 84865024300 scopus 로고    scopus 로고
    • Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
    • [8] Wang, Y., Wang, J., Zhao, G., et al. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 48 (2012), 284–294.
    • (2012) Energy Policy , vol.48 , pp. 284-294
    • Wang, Y.1    Wang, J.2    Zhao, G.3
  • 9
    • 84864290302 scopus 로고    scopus 로고
    • Interval type-2 fuzzy logic systems for load forecasting: a comparative study
    • [9] Khosravi, A., Nahavandi, S., Creighton, D., et al. Interval type-2 fuzzy logic systems for load forecasting: a comparative study. IEEE Trans. Power Syst. 27:3 (2012), 1274–1282.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.3 , pp. 1274-1282
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 10
    • 77949268921 scopus 로고    scopus 로고
    • Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach
    • [10] Kucukali, S., Baris, K., Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 38:5 (2010), 2438–2445.
    • (2010) Energy Policy , vol.38 , Issue.5 , pp. 2438-2445
    • Kucukali, S.1    Baris, K.2
  • 11
    • 0029539588 scopus 로고
    • Building a fuzzy expert system for electric load forecasting using a hybrid neural network
    • [11] Dash, P.K., Liew, A.C., Rahman, S., et al. Building a fuzzy expert system for electric load forecasting using a hybrid neural network. Expert Syst. Appl. 9:3 (1995), 407–421.
    • (1995) Expert Syst. Appl. , vol.9 , Issue.3 , pp. 407-421
    • Dash, P.K.1    Liew, A.C.2    Rahman, S.3
  • 12
    • 0008049871 scopus 로고
    • Hybrid expert system for aiding dispatchers on bulk power systems restoration
    • [12] Yongli, Z., Hogg, B.W., Zhang, W.Q., et al. Hybrid expert system for aiding dispatchers on bulk power systems restoration. Int. J. Electr. Power Energy Syst. 16:4 (1994), 259–268.
    • (1994) Int. J. Electr. Power Energy Syst. , vol.16 , Issue.4 , pp. 259-268
    • Yongli, Z.1    Hogg, B.W.2    Zhang, W.Q.3
  • 13
    • 33746839289 scopus 로고    scopus 로고
    • A trigonometric grey prediction approach to forecasting electricity demand
    • [13] Zhou, P., Ang, B.W., Poh, K.L., A trigonometric grey prediction approach to forecasting electricity demand. Energy 31:14 (2006), 2839–2847.
    • (2006) Energy , vol.31 , Issue.14 , pp. 2839-2847
    • Zhou, P.1    Ang, B.W.2    Poh, K.L.3
  • 14
    • 34250208764 scopus 로고    scopus 로고
    • Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
    • [14] Akay, D., Atak, M., Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32:9 (2007), 1670–1675.
    • (2007) Energy , vol.32 , Issue.9 , pp. 1670-1675
    • Akay, D.1    Atak, M.2
  • 15
    • 80052807923 scopus 로고    scopus 로고
    • Forecasting electricity demand in Thailand with an artificial neural network approach
    • [15] Kandananond, K., Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 4:8 (2011), 1246–1257.
    • (2011) Energies , vol.4 , Issue.8 , pp. 1246-1257
    • Kandananond, K.1
  • 16
    • 20744444912 scopus 로고    scopus 로고
    • Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
    • [16] Plumb, A.P., Rowe, R.C., York, P., et al. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J. Pharm. Sci. 25:4 (2005), 395–405.
    • (2005) Eur. J. Pharm. Sci. , vol.25 , Issue.4 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3
  • 17
    • 36148953966 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
    • [17] Al-Alawi, S.M., Abdul-Wahab, S.A., Bakheit, C.S., Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 23:4 (2008), 396–403.
    • (2008) Environ. Model. Softw. , vol.23 , Issue.4 , pp. 396-403
    • Al-Alawi, S.M.1    Abdul-Wahab, S.A.2    Bakheit, C.S.3
  • 18
    • 65649147967 scopus 로고    scopus 로고
    • A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
    • [18] Azadeh, A., Saberi, M., Gitiforouz, A., et al. A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation. Expert Syst. Appl. 36:8 (2009), 11108–11117.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.8 , pp. 11108-11117
    • Azadeh, A.1    Saberi, M.2    Gitiforouz, A.3
  • 19
    • 58349088285 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
    • [19] Khajeh, A., Modarress, H., Rezaee, B., Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36:3 (2009), 5728–5732.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5728-5732
    • Khajeh, A.1    Modarress, H.2    Rezaee, B.3
  • 20
    • 67349169799 scopus 로고    scopus 로고
    • Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent
    • [20] Pai, T.Y., Wan, T.J., Hsu, S.T., et al. Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Comput. Chem. Eng. 33:7 (2009), 1272–1278.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.7 , pp. 1272-1278
    • Pai, T.Y.1    Wan, T.J.2    Hsu, S.T.3
  • 21
    • 53849110638 scopus 로고    scopus 로고
    • BP neural network with rough set for short term load forecasting
    • [21] Xiao, Z., Ye, S.J., Zhong, B., et al. BP neural network with rough set for short term load forecasting. Expert Syst. Appl. 36:1 (2009), 273–279.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.1 , pp. 273-279
    • Xiao, Z.1    Ye, S.J.2    Zhong, B.3
  • 22
    • 84877670626 scopus 로고    scopus 로고
    • Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity
    • [22] Azwadi, C.S.N., Zeinali, M., Safdari, A., et al. Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity. Numer. Heat Transf. A 63:12 (2013), 906–920.
    • (2013) Numer. Heat Transf. A , vol.63 , Issue.12 , pp. 906-920
    • Azwadi, C.S.N.1    Zeinali, M.2    Safdari, A.3
  • 23
    • 0014629731 scopus 로고
    • The combination of forecasts
    • [23] Bates, John M., Granger, Clive W.J., The combination of forecasts. J. Oper. Res. Soc. 20:4 (1969), 451–468.
    • (1969) J. Oper. Res. Soc. , vol.20 , Issue.4 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 24
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • [24] Xiong, T., Bao, Y., Hu, Z., Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge Based Syst. 55 (2014), 87–100.
    • (2014) Knowledge Based Syst. , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 25
    • 70350162324 scopus 로고    scopus 로고
    • A hybrid MPSO-BP structure adaptive algorithm for RBFNs
    • [25] Yu, S., Zhu, K., Gao, S., A hybrid MPSO-BP structure adaptive algorithm for RBFNs. Neural Comput. Appl. 18:7 (2009), 769–779.
    • (2009) Neural Comput. Appl. , vol.18 , Issue.7 , pp. 769-779
    • Yu, S.1    Zhu, K.2    Gao, S.3
  • 26
    • 77955173218 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
    • [26] Tan, Z., Zhang, J., Wang, J., et al. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl. Energy 87:11 (2010), 3606–3610.
    • (2010) Appl. Energy , vol.87 , Issue.11 , pp. 3606-3610
    • Tan, Z.1    Zhang, J.2    Wang, J.3
  • 27
    • 84955489089 scopus 로고    scopus 로고
    • Reliability forecasting models for electrical distribution systems considering component failures and planned outages
    • [27] Xie, K., Zhang, H., Singh, C., Reliability forecasting models for electrical distribution systems considering component failures and planned outages. Int. J. Electr. Power Energy Syst. 79 (2016), 228–234.
    • (2016) Int. J. Electr. Power Energy Syst. , vol.79 , pp. 228-234
    • Xie, K.1    Zhang, H.2    Singh, C.3
  • 28
    • 56449117278 scopus 로고    scopus 로고
    • A modified backpropagation learning algorithm with added emotional coefficients
    • [28] Khashman, A., A modified backpropagation learning algorithm with added emotional coefficients. IEEE Trans. Neural Netw. 19:11 (2008), 1896–1909.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.11 , pp. 1896-1909
    • Khashman, A.1
  • 29
    • 0021608723 scopus 로고
    • Generation of autocorrelated wind speeds for wind energy conversion system studies
    • [29] Blanchard, M., Desrochers, G., Generation of autocorrelated wind speeds for wind energy conversion system studies. Sol. Energy 33:6 (1984), 571–579.
    • (1984) Sol. Energy , vol.33 , Issue.6 , pp. 571-579
    • Blanchard, M.1    Desrochers, G.2
  • 30
    • 0007087843 scopus 로고    scopus 로고
    • Forecasting economic processes
    • [30] Clements, M.P., Hendry, D.F., Forecasting economic processes. Int. J. Forecast. 14:1 (1998), 111–131.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 111-131
    • Clements, M.P.1    Hendry, D.F.2
  • 31
    • 70350165286 scopus 로고    scopus 로고
    • Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan
    • [31] Liang, Y.H., Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan. Neural Comput. Appl. 18:7 (2009), 833–841.
    • (2009) Neural Comput. Appl. , vol.18 , Issue.7 , pp. 833-841
    • Liang, Y.H.1
  • 32
    • 67650333848 scopus 로고    scopus 로고
    • Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model
    • [32] Koutroumanidis, T., Ioannou, K., Arabatzis, G., Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model. Energy Policy 37:9 (2009), 3627–3634.
    • (2009) Energy Policy , vol.37 , Issue.9 , pp. 3627-3634
    • Koutroumanidis, T.1    Ioannou, K.2    Arabatzis, G.3
  • 33
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • [33] Kavasseri, R.G., Seetharaman, K., Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 34:5 (2009), 1388–1393.
    • (2009) Renew. Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 34
    • 84859215386 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties
    • [34] Petković, D., Issa, M., Pavlović, N.D., et al. Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39:10 (2012), 9477–9482.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.10 , pp. 9477-9482
    • Petković, D.1    Issa, M.2    Pavlović, N.D.3
  • 35
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia
    • [35] El-Shafie, A., Jaafer, O., Akrami, S.A., Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia. Int. J. Phys. Sci. 6:12 (2011), 2875–2888.
    • (2011) Int. J. Phys. Sci. , vol.6 , Issue.12 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Akrami, S.A.3
  • 36
    • 58349088285 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
    • [36] Khajeh, A., Modarress, H., Rezaee, B., Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36:3 (2009), 5728–5732.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5728-5732
    • Khajeh, A.1    Modarress, H.2    Rezaee, B.3
  • 37
    • 84858379971 scopus 로고    scopus 로고
    • Research on the forecast model of electricity power industry loan based on GA-BP neural network
    • [37] Ke, L., Wenyan, G., Xiaoliu, S., et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network. Energy Procedia 14 (2012), 1918–1924.
    • (2012) Energy Procedia , vol.14 , pp. 1918-1924
    • Ke, L.1    Wenyan, G.2    Xiaoliu, S.3
  • 38
    • 79952439726 scopus 로고    scopus 로고
    • Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm
    • [38] Wang, J., Zhu, S., Zhao, W., et al. Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm. Expert Syst. Appl. 38:7 (2011), 8151–8158.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8151-8158
    • Wang, J.1    Zhu, S.2    Zhao, W.3
  • 39
    • 84875245118 scopus 로고    scopus 로고
    • Efficient ant colony optimization for image feature selection
    • [39] Chen, B., Chen, L., Chen, Y., Efficient ant colony optimization for image feature selection. Signal Process. 93:6 (2013), 1566–1576.
    • (2013) Signal Process. , vol.93 , Issue.6 , pp. 1566-1576
    • Chen, B.1    Chen, L.2    Chen, Y.3
  • 40
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • [40] Azadeh, A., Ghaderi, S.F., Sohrabkhani, S., Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Convers. Manage. 49:8 (2008), 2272–2278.
    • (2008) Energy Convers. Manage. , vol.49 , Issue.8 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 41
    • 84871900799 scopus 로고    scopus 로고
    • A comprehensive foundation
    • [41] Haykin, S., Network, N., A comprehensive foundation. Neural Netw., 2004, 2004, 2.
    • (2004) Neural Netw. , vol.2004 , pp. 2
    • Haykin, S.1    Network, N.2
  • 42
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • [42] Faruk, D.Ö., A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 23:4 (2010), 586–594.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.Ö.1
  • 43
    • 0026925677 scopus 로고
    • Self-learning fuzzy controllers based on temporal backpropagation[
    • [43] Jang, J.S.R., Self-learning fuzzy controllers based on temporal backpropagation[. IEEE Trans. Neural Netw. 3:5 (1992), 714–723.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 44
    • 0043065381 scopus 로고    scopus 로고
    • Using fuzzy neural network approach to estimate contractors’ markup
    • [44] Liu, M., Ling, Y.Y., Using fuzzy neural network approach to estimate contractors’ markup. Build. Environ. 38:11 (2003), 1303–1308.
    • (2003) Build. Environ. , vol.38 , Issue.11 , pp. 1303-1308
    • Liu, M.1    Ling, Y.Y.2
  • 45
    • 70349505264 scopus 로고    scopus 로고
    • Time Series Analysis: Forecasting and Control
    • John Wiley & Sons
    • [45] Box, G.E.P., Jenkins, G.M., Reinsel, G.C.et al., Time Series Analysis: Forecasting and Control. 2015, John Wiley & Sons.
    • (2015)
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.E.A.3
  • 46
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • [46] Tseng, F.M., Yu, H.C., Tzeng, G.H., Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Change 69:1 (2002), 71–87.
    • (2002) Technol. Forecast. Soc. Change , vol.69 , Issue.1 , pp. 71-87
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 47
    • 0003853519 scopus 로고
    • Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces
    • ICSI Berkeley
    • [47] Storn, R., Price, K., Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. 1995, ICSI, Berkeley.
    • (1995)
    • Storn, R.1    Price, K.2
  • 48
    • 40249116814 scopus 로고    scopus 로고
    • A new particle swarm optimization for the open shop scheduling problem
    • [48] Sha, D.Y., Hsu, C.Y., A new particle swarm optimization for the open shop scheduling problem. Comput. Oper. Res. 35:10 (2008), 3243–3261.
    • (2008) Comput. Oper. Res. , vol.35 , Issue.10 , pp. 3243-3261
    • Sha, D.Y.1    Hsu, C.Y.2
  • 49
    • 68849116258 scopus 로고    scopus 로고
    • Optimal power flow using differential evolution algorithm
    • [49] El Ela, A.A.A., Abido, M.A., Spea, S.R., Optimal power flow using differential evolution algorithm. Electr. Eng. 91:2 (2009), 69–78.
    • (2009) Electr. Eng. , vol.91 , Issue.2 , pp. 69-78
    • El Ela, A.A.A.1    Abido, M.A.2    Spea, S.R.3
  • 50
    • 34249852438 scopus 로고    scopus 로고
    • Differential evolution strategies for optimal design of shell-and-tube heat exchangers
    • [50] Babu, B.V., Munawar, S.A., Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 62:14 (2007), 3720–3739.
    • (2007) Chem. Eng. Sci. , vol.62 , Issue.14 , pp. 3720-3739
    • Babu, B.V.1    Munawar, S.A.2
  • 51
    • 75349086823 scopus 로고    scopus 로고
    • Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor
    • [51] Khademi, M.H., Rahimpour, M.R., Jahanmiri, A., Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydrogen Energy 35:5 (2010), 1936–1950.
    • (2010) Int. J. Hydrogen Energy , vol.35 , Issue.5 , pp. 1936-1950
    • Khademi, M.H.1    Rahimpour, M.R.2    Jahanmiri, A.3
  • 52
    • 0342505598 scopus 로고
    • Combining forecasts: the end of the beginning or the beginning of the end?
    • [52] Armstrong, J.S., Combining forecasts: the end of the beginning or the beginning of the end?. Int. J. Forecast. 5:4 (1989), 585–588.
    • (1989) Int. J. Forecast. , vol.5 , Issue.4 , pp. 585-588
    • Armstrong, J.S.1
  • 53
  • 54
    • 0023312713 scopus 로고
    • Combination of forecasts: an extension
    • [54] Gupta, S., Wilton, P.C., Combination of forecasts: an extension. Manage. Sci. 33:3 (1987), 356–372.
    • (1987) Manage. Sci. , vol.33 , Issue.3 , pp. 356-372
    • Gupta, S.1    Wilton, P.C.2
  • 55
    • 84928213604 scopus 로고    scopus 로고
    • A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting
    • [55] Chen, Y., Yang, Y., Liu, C., et al. A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting. Appl. Math. Model. 39:9 (2015), 2617–2632.
    • (2015) Appl. Math. Model. , vol.39 , Issue.9 , pp. 2617-2632
    • Chen, Y.1    Yang, Y.2    Liu, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.