메뉴 건너뛰기




Volumn 180, Issue , 2016, Pages 213-233

Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting

Author keywords

Hybrid forecasting model; Multi objective firefly algorithm (MOFA); Multi objective optimization; Short term load forecasting (STLF)

Indexed keywords

BIOLUMINESCENCE; DATA HANDLING; ELECTRIC POWER PLANT LOADS; FORECASTING; MULTIOBJECTIVE OPTIMIZATION; NEURAL NETWORKS; OPTIMIZATION; STABILITY;

EID: 84980410056     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.07.113     Document Type: Article
Times cited : (112)

References (70)
  • 1
    • 84898917562 scopus 로고    scopus 로고
    • Improving photovoltaics grid integration through short time forecasting and self-consumption
    • [1] Masa-Bote, D., Castillo-Cagigal, M., Matallanas, E., et al. Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl Energy 125:15 (2014), 103–113.
    • (2014) Appl Energy , vol.125 , Issue.15 , pp. 103-113
    • Masa-Bote, D.1    Castillo-Cagigal, M.2    Matallanas, E.3
  • 2
    • 84861688089 scopus 로고    scopus 로고
    • Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
    • [2] Javed, F., Arshad, N., Wallin, F., Vassileva, I., Vassileva, E., Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting. Appl Energy 96 (2012), 150–160.
    • (2012) Appl Energy , vol.96 , pp. 150-160
    • Javed, F.1    Arshad, N.2    Wallin, F.3    Vassileva, I.4    Vassileva, E.5
  • 3
    • 84905670743 scopus 로고    scopus 로고
    • A hybrid model based on data preprocessing for electrical power forecasting
    • [3] Xiao, L., Wang, J., Yang, X., Xiao, L., A hybrid model based on data preprocessing for electrical power forecasting. Electr Power Energy Syst 64 (2015), 311–327.
    • (2015) Electr Power Energy Syst , vol.64 , pp. 311-327
    • Xiao, L.1    Wang, J.2    Yang, X.3    Xiao, L.4
  • 4
    • 84980402752 scopus 로고    scopus 로고
    • [4] http://roll.sohu.com/20120801/n349565472.shtml.
  • 5
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • [5] Xiao, L., Wang, J., Hou, R., Wu, J., A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82 (2015), 524–549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3    Wu, J.4
  • 6
    • 84865024300 scopus 로고    scopus 로고
    • Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
    • [6] Wang, Y., Wang, J., Zhao, G., Dong, Y., Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 48 (2012), 284–294.
    • (2012) Energy Policy , vol.48 , pp. 284-294
    • Wang, Y.1    Wang, J.2    Zhao, G.3    Dong, Y.4
  • 7
    • 6344242309 scopus 로고    scopus 로고
    • Research on processing of short-term historical data of daily load based on Kalman filter
    • [7] Zhang, M., Bao, H., Yan, L., Cao, J., Du, J., Research on processing of short-term historical data of daily load based on Kalman filter. Power System Technol, 10, 2003, 9.
    • (2003) Power System Technol , vol.10 , pp. 9
    • Zhang, M.1    Bao, H.2    Yan, L.3    Cao, J.4    Du, J.5
  • 10
    • 0015022169 scopus 로고
    • Short-term load forecasting using general exponential smoothing
    • [10] Christiaanse, W., Short-term load forecasting using general exponential smoothing. IEEE Trans Power Apparat Syst 8 (1971), 900–911.
    • (1971) IEEE Trans Power Apparat Syst , vol.8 , pp. 900-911
    • Christiaanse, W.1
  • 12
    • 84896951924 scopus 로고    scopus 로고
    • Hybrid of ARIMA and SVMs for short-term loadforecasting
    • [12] Nie, H., Liu, G., Liu, X., Wang, Y., Hybrid of ARIMA and SVMs for short-term loadforecasting. Energy Proc 16 (2012), 1455–1460.
    • (2012) Energy Proc , vol.16 , pp. 1455-1460
    • Nie, H.1    Liu, G.2    Liu, X.3    Wang, Y.4
  • 13
    • 77954032128 scopus 로고    scopus 로고
    • An enhanced radial basis function network for short-term electricity price forecasting
    • [13] Lin, W., Gow, H., Tsai, M., An enhanced radial basis function network for short-term electricity price forecasting. Appl Energy 87:10 (2010), 3226–3234.
    • (2010) Appl Energy , vol.87 , Issue.10 , pp. 3226-3234
    • Lin, W.1    Gow, H.2    Tsai, M.3
  • 14
    • 84862777006 scopus 로고    scopus 로고
    • An annual load forecasting model based on support vector regression with differential evolution algorithm
    • [14] Wang, J., Li, L., Niu, D., Tan, Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94 (2012), 65–70.
    • (2012) Appl Energy , vol.94 , pp. 65-70
    • Wang, J.1    Li, L.2    Niu, D.3    Tan, Z.4
  • 15
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • [15] Jain, R., Smith, K., Culligan, P., Taylor, J., Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl Energy 123:15 (2014), 168–178.
    • (2014) Appl Energy , vol.123 , Issue.15 , pp. 168-178
    • Jain, R.1    Smith, K.2    Culligan, P.3    Taylor, J.4
  • 16
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • [16] Liu, H., Tian, H., Pan, D., Li, Y., Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 107 (2013), 191–208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 17
    • 84869883880 scopus 로고    scopus 로고
    • 2 and electricity prices and their volatilities
    • 2 and electricity prices and their volatilities. Appl Energy 101 (2013), 363–375.
    • (2013) Appl Energy , vol.101 , pp. 363-375
    • Carolina, G.1    Julio, R.2    Maria, J.3
  • 18
    • 0017996045 scopus 로고
    • Forecasting peak system load using a combined time series and econometric model
    • [18] Uri, N., Forecasting peak system load using a combined time series and econometric model. Appl Energy 4:3 (1978), 219–227.
    • (1978) Appl Energy , vol.4 , Issue.3 , pp. 219-227
    • Uri, N.1
  • 19
    • 0037409059 scopus 로고    scopus 로고
    • Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
    • [19] Metaxiotis, K., Kagiannas, A., Askounis, D., Psarras, J., Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy Convers Manage 44 (2003), 1525–1534.
    • (2003) Energy Convers Manage , vol.44 , pp. 1525-1534
    • Metaxiotis, K.1    Kagiannas, A.2    Askounis, D.3    Psarras, J.4
  • 20
    • 84957805665 scopus 로고    scopus 로고
    • A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
    • [20] Xiao, L., Shao, W., Liang, T., Wang, C., A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl Energy 167 (2016), 135–153.
    • (2016) Appl Energy , vol.167 , pp. 135-153
    • Xiao, L.1    Shao, W.2    Liang, T.3    Wang, C.4
  • 21
    • 0026254768 scopus 로고
    • A general regression neural network
    • [21] Specht, D., A general regression neural network. IEEE Trans Neural, 1991.
    • (1991) IEEE Trans Neural
    • Specht, D.1
  • 22
    • 44649176454 scopus 로고    scopus 로고
    • Multilayer neuro-fuzzy network for short-term electric load forecasting
    • [22] Bodyanskiy, Y., Popov, S., Rybalchenko, T., Multilayer neuro-fuzzy network for short-term electric load forecasting. Lecture Notes Comput Sci 5010 (2008), 339–348.
    • (2008) Lecture Notes Comput Sci , vol.5010 , pp. 339-348
    • Bodyanskiy, Y.1    Popov, S.2    Rybalchenko, T.3
  • 23
    • 81155159719 scopus 로고    scopus 로고
    • A computational intelligence for prediction of daily peak load
    • [23] Nagi, J., Yap, K., Nagi, F., Tiong, S., Ahmed, S., A computational intelligence for prediction of daily peak load. Appl Soft Comput 11 (2011), 4773–4788.
    • (2011) Appl Soft Comput , vol.11 , pp. 4773-4788
    • Nagi, J.1    Yap, K.2    Nagi, F.3    Tiong, S.4    Ahmed, S.5
  • 24
    • 0024001840 scopus 로고
    • An expert system based algorithm for short term load forecasting
    • [24] Rahman, S., Bhatangar, R., An expert system based algorithm for short term load forecasting. IEEE Trans Power Syst 3 (1988), 392–399.
    • (1988) IEEE Trans Power Syst , vol.3 , pp. 392-399
    • Rahman, S.1    Bhatangar, R.2
  • 25
    • 79551521470 scopus 로고    scopus 로고
    • An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherica l ARTMAP network) neural network
    • [25] Cai, Y., Wang, J., Tang, Y., Yang, Y., An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherica l ARTMAP network) neural network. Energy 36 (2011), 1340–1350.
    • (2011) Energy , vol.36 , pp. 1340-1350
    • Cai, Y.1    Wang, J.2    Tang, Y.3    Yang, Y.4
  • 26
    • 33750125872 scopus 로고    scopus 로고
    • Combining rainfall-runoff model outputs for improving ensemble streamflow prediction
    • [26] Kim, Y., Jeong, D., Ko, I., Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. J Hydrol Eng 11:6 (2006), 578–588.
    • (2006) J Hydrol Eng , vol.11 , Issue.6 , pp. 578-588
    • Kim, Y.1    Jeong, D.2    Ko, I.3
  • 27
    • 84958280573 scopus 로고    scopus 로고
    • Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models
    • [27] Wang, J., Song, Y., Liu, F., Hou, R., Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models. Renew Sustain Energy Rev 60 (2016), 960–981.
    • (2016) Renew Sustain Energy Rev , vol.60 , pp. 960-981
    • Wang, J.1    Song, Y.2    Liu, F.3    Hou, R.4
  • 28
    • 84901800377 scopus 로고    scopus 로고
    • A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
    • [28] Liu, N., Tang, Q., Zhang, J., Fan, W., Liu, J., A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl Energy 129 (2014), 336–345.
    • (2014) Appl Energy , vol.129 , pp. 336-345
    • Liu, N.1    Tang, Q.2    Zhang, J.3    Fan, W.4    Liu, J.5
  • 29
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • [29] Yu, F., Xu, X., A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 134 (2014), 102–113.
    • (2014) Appl Energy , vol.134 , pp. 102-113
    • Yu, F.1    Xu, X.2
  • 30
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • [30] Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34 (2014), 243–254.
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 31
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • [31] Raza, Qamar, Muhammad, Khosravi, Abbas, A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew Sustain Energy Rev 50 (2015), 1352–1372.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 1352-1372
    • Raza1    Qamar, M.2    Khosravi, A.3
  • 32
    • 84891616845 scopus 로고    scopus 로고
    • Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank
    • [32] Selakov, A., Cvijetinovic, D., Milovic, L., Mellon, S., Bekut, D., Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl Soft Comput 16 (2014), 80–88.
    • (2014) Appl Soft Comput , vol.16 , pp. 80-88
    • Selakov, A.1    Cvijetinovic, D.2    Milovic, L.3    Mellon, S.4    Bekut, D.5
  • 33
    • 84899877434 scopus 로고    scopus 로고
    • Hybrid improved differential evolution and wavelet neural network with load forecasting problem of air conditioning
    • [33] Liao, G., Hybrid improved differential evolution and wavelet neural network with load forecasting problem of air conditioning. Electr Power Energy Syst 61 (2014), 673–682.
    • (2014) Electr Power Energy Syst , vol.61 , pp. 673-682
    • Liao, G.1
  • 34
    • 84899800725 scopus 로고    scopus 로고
    • A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • [34] Abdollah, K., Haidar, S., Fatemeh, M., A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41 (2014), 6047–6056.
    • (2014) Expert Syst Appl , vol.41 , pp. 6047-6056
    • Abdollah, K.1    Haidar, S.2    Fatemeh, M.3
  • 35
    • 0031103928 scopus 로고    scopus 로고
    • Genetic algorithms for the least-cost design of water distribution networks
    • [35] Savic, D., Walters, G., Genetic algorithms for the least-cost design of water distribution networks. J Water Res Plan Manage 123:2 (1997), 67–77.
    • (1997) J Water Res Plan Manage , vol.123 , Issue.2 , pp. 67-77
    • Savic, D.1    Walters, G.2
  • 36
    • 84879092644 scopus 로고    scopus 로고
    • Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm
    • [36] Bureerat, S., Sriworamas, K., Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm. Appl Soft Comput 13:8 (2013), 3693–3702.
    • (2013) Appl Soft Comput , vol.13 , Issue.8 , pp. 3693-3702
    • Bureerat, S.1    Sriworamas, K.2
  • 37
    • 61449173027 scopus 로고    scopus 로고
    • Multi-objective optimization in high frequency electro magnetic-an effective technique for Smart Mobile Terminal Antenna (SMTA) design
    • [37] Lu, J., Ireland, D., Lewis, A., Multi-objective optimization in high frequency electro magnetic-an effective technique for Smart Mobile Terminal Antenna (SMTA) design. IEEE Trans Evol Comput 45:3 (2009), 1072–1075.
    • (2009) IEEE Trans Evol Comput , vol.45 , Issue.3 , pp. 1072-1075
    • Lu, J.1    Ireland, D.2    Lewis, A.3
  • 38
    • 84885574872 scopus 로고    scopus 로고
    • A hybrid evolutionary multi-objective optimization strategy for the dynamic power supply problem in magnesia grain manufacturing
    • [38] Kong, W., Chai, T., Yang, S., Ding, J., A hybrid evolutionary multi-objective optimization strategy for the dynamic power supply problem in magnesia grain manufacturing. Appl Soft Comput 13:5 (2013), 2960–2969.
    • (2013) Appl Soft Comput , vol.13 , Issue.5 , pp. 2960-2969
    • Kong, W.1    Chai, T.2    Yang, S.3    Ding, J.4
  • 39
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multi-objective genetic algorithm: NSGA-II
    • [39] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:2 (2002), 182–197.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 40
    • 0004140075 scopus 로고    scopus 로고
    • SPEA2: improving the strength pareto evolutionary algorithm
    • Technical report 103 Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich (Switzerland)
    • [40] Zitzler, E., Laumanns, M., Thiele, L., SPEA2: improving the strength pareto evolutionary algorithm. Technical report 103, 2001, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich (Switzerland).
    • (2001)
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 41
    • 0003482385 scopus 로고    scopus 로고
    • Evolutionary algorithms for multiobjective optimization: methods and applications (Ph.D. thesis)
    • ETH Zurich Switzerland
    • [41] Zitzler, E., Evolutionary algorithms for multiobjective optimization: methods and applications (Ph.D. thesis)., 1999, ETH Zurich, Switzerland.
    • (1999)
    • Zitzler, E.1
  • 42
    • 0003709653 scopus 로고
    • Multiple criteria optimization: theory computation, and application
    • Wiley New York
    • [42] Steuer, R., Multiple criteria optimization: theory computation, and application. 1986, Wiley, New York.
    • (1986)
    • Steuer, R.1
  • 43
    • 0003414496 scopus 로고
    • Multiobjective programming planning
    • Academic Press New York
    • [43] Cohon, J.L., Multiobjective programming planning. 1978, Academic Press, New York.
    • (1978)
    • Cohon, J.L.1
  • 45
    • 0000852513 scopus 로고
    • Multi-objective optimization using non-dominated sorting in genetic algorithms
    • [45] Srinivas, N., Deb, K., Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2:3 (1994), 221–248.
    • (1994) Evol Comput , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 46
    • 84882411825 scopus 로고    scopus 로고
    • Multiple populations for multiple objectives: a co-evolutionary technique for solving multi-objective optimization problems
    • [46] Zhan, Z., Li, J.J., Cao, J., Zhang, J., Chung, H., Shi, Y., Multiple populations for multiple objectives: a co-evolutionary technique for solving multi-objective optimization problems. IEEE Trans Cybern 42:2 (2013), 445–463.
    • (2013) IEEE Trans Cybern , vol.42 , Issue.2 , pp. 445-463
    • Zhan, Z.1    Li, J.J.2    Cao, J.3    Zhang, J.4    Chung, H.5    Shi, Y.6
  • 48
    • 27644543634 scopus 로고    scopus 로고
    • Ant colony optimization theory: a survey
    • [48] Dorigo, M., Blum, C., Ant colony optimization theory: a survey. Theor Comput Sci 344:2–3 (2005), 243–278.
    • (2005) Theor Comput Sci , vol.344 , Issue.2-3 , pp. 243-278
    • Dorigo, M.1    Blum, C.2
  • 49
    • 70649095104 scopus 로고    scopus 로고
    • An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem
    • [49] Yang, J., Zhuang, Y., An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Appl Soft Comput 10:2 (2010), 653–660.
    • (2010) Appl Soft Comput , vol.10 , Issue.2 , pp. 653-660
    • Yang, J.1    Zhuang, Y.2
  • 51
    • 24344467542 scopus 로고    scopus 로고
    • Clonal selection with immune dominance and energy based multi-objective optimization evolutionary multicriterion optimization
    • [51] Jiao, L., Gong, M., Shang, R., Du, H., Lu, B., Clonal selection with immune dominance and energy based multi-objective optimization evolutionary multicriterion optimization. Lect Notes Comput Sci 3410 (2005), 474–489.
    • (2005) Lect Notes Comput Sci , vol.3410 , pp. 474-489
    • Jiao, L.1    Gong, M.2    Shang, R.3    Du, H.4    Lu, B.5
  • 52
    • 62549162821 scopus 로고    scopus 로고
    • Nature-inspired metaheuristic algorithms
    • Luniver Press UK
    • [52] Yang, X., Nature-inspired metaheuristic algorithms. 2008, Luniver Press, UK.
    • (2008)
    • Yang, X.1
  • 53
    • 84880515221 scopus 로고    scopus 로고
    • Multi-objective firefly algorithm for continuous optimization
    • [53] Yang, X., Multi-objective firefly algorithm for continuous optimization. Eng Comput 29 (2013), 175–184.
    • (2013) Eng Comput , vol.29 , pp. 175-184
    • Yang, X.1
  • 54
    • 84961891840 scopus 로고    scopus 로고
    • Weighing efficiency-robustness in supply chain disruption by multi-objective firefly algorithm
    • [54] Shu, T., Gao, X., Chen, S., Wang, S., Lai, K., Gan, L., Weighing efficiency-robustness in supply chain disruption by multi-objective firefly algorithm. Sustainability 8 (2016), 250–277.
    • (2016) Sustainability , vol.8 , pp. 250-277
    • Shu, T.1    Gao, X.2    Chen, S.3    Wang, S.4    Lai, K.5    Gan, L.6
  • 55
    • 84897492572 scopus 로고    scopus 로고
    • A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems
    • [55] Marichelvam, M., Prabaharan, T., Yang, X., A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans Evolut Comput 18 (2014), 301–305.
    • (2014) IEEE Trans Evolut Comput , vol.18 , pp. 301-305
    • Marichelvam, M.1    Prabaharan, T.2    Yang, X.3
  • 56
    • 84907789787 scopus 로고    scopus 로고
    • An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration
    • [56] Liang, R., Wang, J., Chen, Y., Tseng, W., An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration. Electr Power Energy Syst 64 (2015), 1088–1097.
    • (2015) Electr Power Energy Syst , vol.64 , pp. 1088-1097
    • Liang, R.1    Wang, J.2    Chen, Y.3    Tseng, W.4
  • 57
    • 84948740857 scopus 로고    scopus 로고
    • A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems
    • [57] Karthikeyan, S., Asokan, P., Nickolas, S., Tom, P., A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio-Inspired Comput, 7, 2015, 6.
    • (2015) Int J Bio-Inspired Comput , vol.7 , pp. 6
    • Karthikeyan, S.1    Asokan, P.2    Nickolas, S.3    Tom, P.4
  • 58
    • 0026254768 scopus 로고
    • A general regression neural network
    • [58] Specht, D.F., A general regression neural network. IEEE Trans Neural Networks 2:6 (1991), 568–576.
    • (1991) IEEE Trans Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 60
    • 0002715074 scopus 로고    scopus 로고
    • Forecasting the short-term demand for electricity-do neural networks stand a better chance?
    • [60] Darbellay, G., Slama, M., Forecasting the short-term demand for electricity-do neural networks stand a better chance?. Int J Forecast 16 (2000), 71–83.
    • (2000) Int J Forecast , vol.16 , pp. 71-83
    • Darbellay, G.1    Slama, M.2
  • 61
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization, stochastic algorithms: foundations and applications. SAGA 2009
    • [61] Yang, X., Firefly algorithms for multimodal optimization, stochastic algorithms: foundations and applications. SAGA 2009. Lect Notes Comput Sci 5792 (2009), 169–178.
    • (2009) Lect Notes Comput Sci , vol.5792 , pp. 169-178
    • Yang, X.1
  • 62
    • 0000852513 scopus 로고
    • Multiobjective function optimization using nondominated sorting genetic algorithms
    • [Fall]
    • [62] Srinivas, N., Deb, K., Multiobjective function optimization using nondominated sorting genetic algorithms. Evol Comput 2:3 (1995), 221–248 [Fall].
    • (1995) Evol Comput , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 63
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • [63] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:2 (2002), 182–197.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 64
    • 36148979000 scopus 로고    scopus 로고
    • Hand geometry identification without feature extraction by general regression neural network
    • [64] Polat, O., Yildirim, T., Hand geometry identification without feature extraction by general regression neural network. Expert Syst Appl 34 (2008), 845–849.
    • (2008) Expert Syst Appl , vol.34 , pp. 845-849
    • Polat, O.1    Yildirim, T.2
  • 65
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • [65] Diebold, F.X., Mariano, R., Comparing predictive accuracy. J Bus Econ Stat 13 (1995), 253–263.
    • (1995) J Bus Econ Stat , vol.13 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.2
  • 66
    • 2542547655 scopus 로고    scopus 로고
    • Research on superior combination forecasting model based on forecasting effective measure
    • [66] Chen, H.Y., Hou, D.P., Research on superior combination forecasting model based on forecasting effective measure. J Univ Sci Technol China, 2, 2002, 006.
    • (2002) J Univ Sci Technol China , vol.2 , pp. 006
    • Chen, H.Y.1    Hou, D.P.2
  • 67
    • 0031891445 scopus 로고    scopus 로고
    • A sequential learning approach for single hidden layer neural networks
    • [67] Zhang, Jie, Morri, A.J., A sequential learning approach for single hidden layer neural networks. Neural Networks 11:1 (1998), 65–80.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 65-80
    • Zhang, J.1    Morri, A.J.2
  • 68
    • 0001594118 scopus 로고
    • Nonlinear multivariate calibration using principal components regression and artificial neural networks
    • [68] Gemperline, P.J., Long, J.R., Gregoriou, V.G., Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal Chem 63 (1991), 2313–2323.
    • (1991) Anal Chem , vol.63 , pp. 2313-2323
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, V.G.3
  • 69
    • 84980355273 scopus 로고    scopus 로고
    • [69] http://www.sgcc.com.cn/dwxx/qydwyxqk/zgfhyjfhl/290684.shtml.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.