메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 208-225

A hybrid wind power forecasting model based on data mining and wavelets analysis

Author keywords

Data mining; Data preprocessing; Forecasting; HANTS; Wavelet decomposition; Wind power

Indexed keywords

CLUSTERING ALGORITHMS; DISCRETE WAVELET TRANSFORMS; ELECTRIC POWER GENERATION; FORECASTING; HARMONIC ANALYSIS; TIME SERIES ANALYSIS; WAVELET DECOMPOSITION; WAVELET TRANSFORMS; WEATHER FORECASTING; WIND POWER;

EID: 84989811566     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2016.09.002     Document Type: Article
Times cited : (142)

References (37)
  • 1
    • 84964322304 scopus 로고    scopus 로고
    • Short-term wind power combined forecasting based on error forecast correction
    • [1] Liang, Z., Liang, J., Wang, C., Dong, X., Miao, X., Short-term wind power combined forecasting based on error forecast correction. Energy Convers Manage 119 (2016), 215–226.
    • (2016) Energy Convers Manage , vol.119 , pp. 215-226
    • Liang, Z.1    Liang, J.2    Wang, C.3    Dong, X.4    Miao, X.5
  • 3
    • 33244470907 scopus 로고    scopus 로고
    • Long-term wind speed and power forecasting using local recurrent neural network models
    • [3] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans Energy Convers 21:1 (2006), 273–284.
    • (2006) IEEE Trans Energy Convers , vol.21 , Issue.1 , pp. 273-284
    • Barbounis, T.G.1    Theocharis, J.B.2    Alexiadis, M.C.3    Dokopoulos, P.S.4
  • 4
    • 84877319141 scopus 로고    scopus 로고
    • Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China
    • [4] Dong, Y., Wang, J., Jiang, H., Shi, H., Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China. Appl Energy 109 (2013), 239–253.
    • (2013) Appl Energy , vol.109 , pp. 239-253
    • Dong, Y.1    Wang, J.2    Jiang, H.3    Shi, H.4
  • 8
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • [8] Zhou, J., Shi, J., Li, G., Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 52 (2011), 1990–1998.
    • (2011) Energy Convers Manage , vol.52 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 9
    • 84931262272 scopus 로고    scopus 로고
    • Short-term wind power prediction based on LSSVM–GSA model
    • [9] Yuan, X., Chen, C., Yuan, Y., Huang, Y., Tan, Q., Short-term wind power prediction based on LSSVM–GSA model. Energy Convers Manage 101 (2015), 393–401.
    • (2015) Energy Convers Manage , vol.101 , pp. 393-401
    • Yuan, X.1    Chen, C.2    Yuan, Y.3    Huang, Y.4    Tan, Q.5
  • 10
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • [10] Meng, A., Ge, J., Yin, H., Chen, S., Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88.
    • (2016) Energy Convers Manage , vol.114 , pp. 75-88
    • Meng, A.1    Ge, J.2    Yin, H.3    Chen, S.4
  • 11
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network–Markov chain model
    • [11] Pourmousavi Kani, S.A., Ardehali, M.M., Very short-term wind speed prediction: a new artificial neural network–Markov chain model. Energy Convers Manage 52 (2011), 738–745.
    • (2011) Energy Convers Manage , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.A.1    Ardehali, M.M.2
  • 12
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • [12] Bhaskar, K., Singh, S.N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:2 (2012), 306–315.
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 14
    • 84946594359 scopus 로고    scopus 로고
    • An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
    • [14] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F., An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl Energy 162 (2016), 808–826.
    • (2016) Appl Energy , vol.162 , pp. 808-826
    • Zhao, J.1    Guo, Z.H.2    Su, Z.Y.3    Zhao, Z.Y.4    Xiao, X.5    Liu, F.6
  • 15
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • [15] Shu, F., Liao, J., Yokoyama, R., Luonan, C., Wei-Jen, L., Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24:2 (2009), 474–482.
    • (2009) IEEE Trans Energy Convers , vol.24 , Issue.2 , pp. 474-482
    • Shu, F.1    Liao, J.2    Yokoyama, R.3    Luonan, C.4    Wei-Jen, L.5
  • 17
    • 79957957081 scopus 로고    scopus 로고
    • Short-term wind power forecast based on cluster analysis and artificial neural networks
    • J. Cabestany I. Rojas G. Joya Springer Berlin Heidelberg
    • [17] Lorenzo, J., Méndez, J., Castrillón, M., Hernández, D., Short-term wind power forecast based on cluster analysis and artificial neural networks. Cabestany, J., Rojas, I., Joya, G., (eds.) Advances in computational intelligence, vol. 6691, 2011, Springer Berlin Heidelberg, 191–198.
    • (2011) Advances in computational intelligence , vol.6691 , pp. 191-198
    • Lorenzo, J.1    Méndez, J.2    Castrillón, M.3    Hernández, D.4
  • 18
    • 84914812023 scopus 로고    scopus 로고
    • An improved feature weighted fuzzy clustering algorithm with its application in short-term prediction of wind power
    • S. Li C. Liu Y. Wang Springer Berlin Heidelberg
    • [18] Wang, W., Luo, D., Wang, H., Hernández, D., An improved feature weighted fuzzy clustering algorithm with its application in short-term prediction of wind power. Li, S., Liu, C., Wang, Y., (eds.) Pattern recognition, vol. 484, 2014, Springer Berlin Heidelberg, 575–584.
    • (2014) Pattern recognition , vol.484 , pp. 575-584
    • Wang, W.1    Luo, D.2    Wang, H.3    Hernández, D.4
  • 19
    • 84926462551 scopus 로고    scopus 로고
    • A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP)
    • [19] Ozkan, M.B., Karagoz, P., A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans Ind Inform 11:2 (2015), 375–387.
    • (2015) IEEE Trans Ind Inform , vol.11 , Issue.2 , pp. 375-387
    • Ozkan, M.B.1    Karagoz, P.2
  • 20
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-Means algorithm
    • [20] Lozano, J.A., Pena, J.M., Larranaga, P., An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recogn Lett 20:10 (1999), 1027–1040.
    • (1999) Pattern Recogn Lett , vol.20 , Issue.10 , pp. 1027-1040
    • Lozano, J.A.1    Pena, J.M.2    Larranaga, P.3
  • 21
    • 0036487280 scopus 로고    scopus 로고
    • The global K-means clustering algorithm
    • [21] Likas, A., Vlassis, N., Verbeek, J.J., The global K-means clustering algorithm. Pattern Recogn 36:2 (2003), 451–461.
    • (2003) Pattern Recogn , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    Verbeek, J.J.3
  • 22
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • [22] Dunn, J.C., A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybernet 3:3 (1973), 32–57.
    • (1973) J Cybernet , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 24
    • 84881261842 scopus 로고    scopus 로고
    • Integration of self-organizing map and K-means++ algorithms
    • P. Perner Springer Berlin Heidelberg
    • [24] Dogan, Y., Birant, D., Kut, A., Integration of self-organizing map and K-means++ algorithms. Perner, P., (eds.) Machine learning and data mining in pattern recognition, vol. 7988, 2013, Springer Berlin Heidelberg, 246–259.
    • (2013) Machine learning and data mining in pattern recognition , vol.7988 , pp. 246-259
    • Dogan, Y.1    Birant, D.2    Kut, A.3
  • 25
    • 84902370672 scopus 로고    scopus 로고
    • K-means∗: clustering by gradual data transformation
    • [25] Malinen, M., Mariescu-Istodor, R., Fränti, P., K-means∗: clustering by gradual data transformation. Pattern Recogn 47:10 (2014), 3376–3386.
    • (2014) Pattern Recogn , vol.47 , Issue.10 , pp. 3376-3386
    • Malinen, M.1    Mariescu-Istodor, R.2    Fränti, P.3
  • 26
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press Berkeley, Calif
    • [26] MacQueen, J.B., Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol. 1, 1967, University of California Press, Berkeley, Calif, 281–297.
    • (1967) Proceedings of 5th Berkeley symposium on mathematical statistics and probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 28
    • 0026686048 scopus 로고
    • Entropy-based algorithms for best basis selection
    • [28] Coifman, R.R., Wickerhauser, M.V., Entropy-based algorithms for best basis selection. IEEE Trans Inf Theory 38:2 (1992), 713–718.
    • (1992) IEEE Trans Inf Theory , vol.38 , Issue.2 , pp. 713-718
    • Coifman, R.R.1    Wickerhauser, M.V.2
  • 29
    • 0242639026 scopus 로고    scopus 로고
    • Application of harmonic analysis of NDVI time series (HANTS)
    • S. Azzali M. Menenti DLO Winand Staring Centre Wageningen, The Netherlands Report 108
    • [29] Verhoef, W., Application of harmonic analysis of NDVI time series (HANTS). Azzali, S., Menenti, M., (eds.) Fourier analysis of temporal NDVI in the Southern African and American continents, 1996, DLO Winand Staring Centre, Wageningen, The Netherlands, 19–24 Report 108.
    • (1996) Fourier analysis of temporal NDVI in the Southern African and American continents , pp. 19-24
    • Verhoef, W.1
  • 30
    • 0034032510 scopus 로고    scopus 로고
    • Reconstructing Cloudfree NDVI composites using Fourier analysis of time series
    • [30] Roerink, G.J., Menenti, M., Verhoef, W., Reconstructing Cloudfree NDVI composites using Fourier analysis of time series. Int J Rem Sens Print 21:9 (2000), 1911–1917.
    • (2000) Int J Rem Sens Print , vol.21 , Issue.9 , pp. 1911-1917
    • Roerink, G.J.1    Menenti, M.2    Verhoef, W.3
  • 31
    • 84989886909 scopus 로고    scopus 로고
    • Persistence forecasting: today equals tomorrow. [Retrieved on -02 16].
    • [31] University of Illinois at Urtanu-Chiimpaign. Persistence forecasting: today equals tomorrow. [Retrieved on 2007-02 16].
    • (2007)
  • 32
    • 84989965716 scopus 로고    scopus 로고
    • [Online]. Available: <>.
    • [32] [Online]. Available: < https://mapsbeta.nrel.gov/wind-prospector/>.
  • 33
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • [33] Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20 (1987), 53–65.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 34
    • 0019707668 scopus 로고
    • On the validation of models
    • [34] Willmott, C., On the validation of models. Phys Geogr 2 (1981), 183–194.
    • (1981) Phys Geogr , vol.2 , pp. 183-194
    • Willmott, C.1
  • 36
    • 33645031359 scopus 로고    scopus 로고
    • Standardizing the performance evaluation of short-term wind power prediction models
    • [36] Madsen, H., Pinson, P., Kariniotakis, G., Nielsen, H.A., Nielsen, T., Standardizing the performance evaluation of short-term wind power prediction models. Wind Eng 29:6 (2005), 475–489.
    • (2005) Wind Eng , vol.29 , Issue.6 , pp. 475-489
    • Madsen, H.1    Pinson, P.2    Kariniotakis, G.3    Nielsen, H.A.4    Nielsen, T.5
  • 37
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • [37] Han, L., Romero, E.C., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, E.C.2    Yao, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.