-
1
-
-
84964322304
-
Short-term wind power combined forecasting based on error forecast correction
-
[1] Liang, Z., Liang, J., Wang, C., Dong, X., Miao, X., Short-term wind power combined forecasting based on error forecast correction. Energy Convers Manage 119 (2016), 215–226.
-
(2016)
Energy Convers Manage
, vol.119
, pp. 215-226
-
-
Liang, Z.1
Liang, J.2
Wang, C.3
Dong, X.4
Miao, X.5
-
2
-
-
84883259248
-
A wind power forecasting system to optimize grid integration
-
[2] Mahoney, W.P., Parks, K., Wiener, G., Yubao, Liu, Myers, W.L., Juanzhen, Sun, et al. A wind power forecasting system to optimize grid integration. IEEE Trans Sustain Energy 3:4 (2012), 670–682.
-
(2012)
IEEE Trans Sustain Energy
, vol.3
, Issue.4
, pp. 670-682
-
-
Mahoney, W.P.1
Parks, K.2
Wiener, G.3
Yubao, L.4
Myers, W.L.5
Juanzhen, S.6
-
3
-
-
33244470907
-
Long-term wind speed and power forecasting using local recurrent neural network models
-
[3] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans Energy Convers 21:1 (2006), 273–284.
-
(2006)
IEEE Trans Energy Convers
, vol.21
, Issue.1
, pp. 273-284
-
-
Barbounis, T.G.1
Theocharis, J.B.2
Alexiadis, M.C.3
Dokopoulos, P.S.4
-
4
-
-
84877319141
-
Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China
-
[4] Dong, Y., Wang, J., Jiang, H., Shi, H., Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China. Appl Energy 109 (2013), 239–253.
-
(2013)
Appl Energy
, vol.109
, pp. 239-253
-
-
Dong, Y.1
Wang, J.2
Jiang, H.3
Shi, H.4
-
5
-
-
84878809512
-
Wind speed forecasting using spatio-temporal indicators
-
L.D. Raedt C. Bessiere D. Dubois P. Doherty P. Frasconi F. Heintz et al. (eds.) IOS Press
-
[5] Ohashi, O., Torgo, L., Wind speed forecasting using spatio-temporal indicators. Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., et al. (eds.) 20th European conference on artificial intelligence. Including prestigious applications of artificial intelligence (PAIS-2012), system demonstrations track, volume 242 of frontiers in artificial intelligence and applications, 2012, IOS Press, 975–980.
-
(2012)
20th European conference on artificial intelligence. Including prestigious applications of artificial intelligence (PAIS-2012), system demonstrations track, volume 242 of frontiers in artificial intelligence and applications
, pp. 975-980
-
-
Ohashi, O.1
Torgo, L.2
-
6
-
-
84958541556
-
Collaborative wind power forecast
-
A. Bouchachia Springer International Publishing Cham
-
[6] Almeida, V., Gama, J., Collaborative wind power forecast. Bouchachia, A., (eds.) Adaptive and intelligent systems: third international conference, ICAIS 2014, Bournemouth, UK, September 8–10, 2014, proceedings, 2014, Springer International Publishing, Cham, 162–171.
-
(2014)
Adaptive and intelligent systems: third international conference, ICAIS 2014, Bournemouth, UK, September 8–10, 2014, proceedings
, pp. 162-171
-
-
Almeida, V.1
Gama, J.2
-
7
-
-
84954424030
-
Linear and non-linear autoregressive models for short-term wind speed forecasting
-
[7] Lydia, M., Suresh Kumar, S., Immanuel Selvakumar, A., Edwin Prem Kumar, G., Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
-
(2016)
Energy Convers Manage
, vol.112
, pp. 115-124
-
-
Lydia, M.1
Suresh Kumar, S.2
Immanuel Selvakumar, A.3
Edwin Prem Kumar, G.4
-
8
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
[8] Zhou, J., Shi, J., Li, G., Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 52 (2011), 1990–1998.
-
(2011)
Energy Convers Manage
, vol.52
, pp. 1990-1998
-
-
Zhou, J.1
Shi, J.2
Li, G.3
-
9
-
-
84931262272
-
Short-term wind power prediction based on LSSVM–GSA model
-
[9] Yuan, X., Chen, C., Yuan, Y., Huang, Y., Tan, Q., Short-term wind power prediction based on LSSVM–GSA model. Energy Convers Manage 101 (2015), 393–401.
-
(2015)
Energy Convers Manage
, vol.101
, pp. 393-401
-
-
Yuan, X.1
Chen, C.2
Yuan, Y.3
Huang, Y.4
Tan, Q.5
-
10
-
-
84958154004
-
Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
-
[10] Meng, A., Ge, J., Yin, H., Chen, S., Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88.
-
(2016)
Energy Convers Manage
, vol.114
, pp. 75-88
-
-
Meng, A.1
Ge, J.2
Yin, H.3
Chen, S.4
-
11
-
-
78049513565
-
Very short-term wind speed prediction: a new artificial neural network–Markov chain model
-
[11] Pourmousavi Kani, S.A., Ardehali, M.M., Very short-term wind speed prediction: a new artificial neural network–Markov chain model. Energy Convers Manage 52 (2011), 738–745.
-
(2011)
Energy Convers Manage
, vol.52
, pp. 738-745
-
-
Pourmousavi Kani, S.A.1
Ardehali, M.M.2
-
12
-
-
84859036543
-
AWNN-assisted wind power forecasting using feed-forward neural network
-
[12] Bhaskar, K., Singh, S.N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:2 (2012), 306–315.
-
(2012)
IEEE Trans Sustain Energy
, vol.3
, Issue.2
, pp. 306-315
-
-
Bhaskar, K.1
Singh, S.N.2
-
13
-
-
84945960460
-
Very short-term wind speed forecasting using spatio-temporal lazy learning
-
N. Japkowicz S. Matwin Springer International Publishing Cham
-
[13] Appice, A., Pravilovic, S., Lanza, A., Malerba, D., Very short-term wind speed forecasting using spatio-temporal lazy learning. Japkowicz, N., Matwin, S., (eds.) Discovery science: 18th international conference, DS 2015, Banff, AB, Canada, October 4–6, 2015, proceedings, 2015, Springer International Publishing, Cham, 9–16.
-
(2015)
Discovery science: 18th international conference, DS 2015, Banff, AB, Canada, October 4–6, 2015, proceedings
, pp. 9-16
-
-
Appice, A.1
Pravilovic, S.2
Lanza, A.3
Malerba, D.4
-
14
-
-
84946594359
-
An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
-
[14] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F., An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl Energy 162 (2016), 808–826.
-
(2016)
Appl Energy
, vol.162
, pp. 808-826
-
-
Zhao, J.1
Guo, Z.H.2
Su, Z.Y.3
Zhao, Z.Y.4
Xiao, X.5
Liu, F.6
-
15
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
[15] Shu, F., Liao, J., Yokoyama, R., Luonan, C., Wei-Jen, L., Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24:2 (2009), 474–482.
-
(2009)
IEEE Trans Energy Convers
, vol.24
, Issue.2
, pp. 474-482
-
-
Shu, F.1
Liao, J.2
Yokoyama, R.3
Luonan, C.4
Wei-Jen, L.5
-
16
-
-
84880252928
-
Advanced algorithms for wind turbine power curve modeling
-
[16] Lydia, M., Selvakumar, A.I., Kumar, S.S., Kumar, G.E.P., Advanced algorithms for wind turbine power curve modeling. IEEE Trans Sustain Energy 4:3 (2013), 827–835.
-
(2013)
IEEE Trans Sustain Energy
, vol.4
, Issue.3
, pp. 827-835
-
-
Lydia, M.1
Selvakumar, A.I.2
Kumar, S.S.3
Kumar, G.E.P.4
-
17
-
-
79957957081
-
Short-term wind power forecast based on cluster analysis and artificial neural networks
-
J. Cabestany I. Rojas G. Joya Springer Berlin Heidelberg
-
[17] Lorenzo, J., Méndez, J., Castrillón, M., Hernández, D., Short-term wind power forecast based on cluster analysis and artificial neural networks. Cabestany, J., Rojas, I., Joya, G., (eds.) Advances in computational intelligence, vol. 6691, 2011, Springer Berlin Heidelberg, 191–198.
-
(2011)
Advances in computational intelligence
, vol.6691
, pp. 191-198
-
-
Lorenzo, J.1
Méndez, J.2
Castrillón, M.3
Hernández, D.4
-
18
-
-
84914812023
-
An improved feature weighted fuzzy clustering algorithm with its application in short-term prediction of wind power
-
S. Li C. Liu Y. Wang Springer Berlin Heidelberg
-
[18] Wang, W., Luo, D., Wang, H., Hernández, D., An improved feature weighted fuzzy clustering algorithm with its application in short-term prediction of wind power. Li, S., Liu, C., Wang, Y., (eds.) Pattern recognition, vol. 484, 2014, Springer Berlin Heidelberg, 575–584.
-
(2014)
Pattern recognition
, vol.484
, pp. 575-584
-
-
Wang, W.1
Luo, D.2
Wang, H.3
Hernández, D.4
-
19
-
-
84926462551
-
A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP)
-
[19] Ozkan, M.B., Karagoz, P., A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans Ind Inform 11:2 (2015), 375–387.
-
(2015)
IEEE Trans Ind Inform
, vol.11
, Issue.2
, pp. 375-387
-
-
Ozkan, M.B.1
Karagoz, P.2
-
20
-
-
0033204902
-
An empirical comparison of four initialization methods for the K-Means algorithm
-
[20] Lozano, J.A., Pena, J.M., Larranaga, P., An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recogn Lett 20:10 (1999), 1027–1040.
-
(1999)
Pattern Recogn Lett
, vol.20
, Issue.10
, pp. 1027-1040
-
-
Lozano, J.A.1
Pena, J.M.2
Larranaga, P.3
-
21
-
-
0036487280
-
The global K-means clustering algorithm
-
[21] Likas, A., Vlassis, N., Verbeek, J.J., The global K-means clustering algorithm. Pattern Recogn 36:2 (2003), 451–461.
-
(2003)
Pattern Recogn
, vol.36
, Issue.2
, pp. 451-461
-
-
Likas, A.1
Vlassis, N.2
Verbeek, J.J.3
-
22
-
-
0015644825
-
A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
-
[22] Dunn, J.C., A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybernet 3:3 (1973), 32–57.
-
(1973)
J Cybernet
, vol.3
, Issue.3
, pp. 32-57
-
-
Dunn, J.C.1
-
23
-
-
84969135721
-
K-means++: the advantages of careful seeding
-
Society for Industrial and Applied Mathematics New Orleans, Louisiana
-
[23] Arthur, D., Vassilvitskii, S., K-means++: the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, 2007, Society for Industrial and Applied Mathematics, New Orleans, Louisiana, 1027–1035.
-
(2007)
Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
24
-
-
84881261842
-
Integration of self-organizing map and K-means++ algorithms
-
P. Perner Springer Berlin Heidelberg
-
[24] Dogan, Y., Birant, D., Kut, A., Integration of self-organizing map and K-means++ algorithms. Perner, P., (eds.) Machine learning and data mining in pattern recognition, vol. 7988, 2013, Springer Berlin Heidelberg, 246–259.
-
(2013)
Machine learning and data mining in pattern recognition
, vol.7988
, pp. 246-259
-
-
Dogan, Y.1
Birant, D.2
Kut, A.3
-
25
-
-
84902370672
-
K-means∗: clustering by gradual data transformation
-
[25] Malinen, M., Mariescu-Istodor, R., Fränti, P., K-means∗: clustering by gradual data transformation. Pattern Recogn 47:10 (2014), 3376–3386.
-
(2014)
Pattern Recogn
, vol.47
, Issue.10
, pp. 3376-3386
-
-
Malinen, M.1
Mariescu-Istodor, R.2
Fränti, P.3
-
26
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
University of California Press Berkeley, Calif
-
[26] MacQueen, J.B., Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol. 1, 1967, University of California Press, Berkeley, Calif, 281–297.
-
(1967)
Proceedings of 5th Berkeley symposium on mathematical statistics and probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.B.1
-
27
-
-
37249048343
-
Kernel MDL to determine the number of clusters
-
P. Perner Springer Berlin Heidelberg
-
[27] Kyrgyzov, I., Kyrgyzov, O., Maître, H., Henri, Campedel, M., Kernel MDL to determine the number of clusters. Perner, P., (eds.) Machine learning and data mining in pattern recognition, vol. 4571, 2007, Springer Berlin Heidelberg, 203–217.
-
(2007)
Machine learning and data mining in pattern recognition
, vol.4571
, pp. 203-217
-
-
Kyrgyzov, I.1
Kyrgyzov, O.2
Maître, H.3
Henri4
Campedel, M.5
-
28
-
-
0026686048
-
Entropy-based algorithms for best basis selection
-
[28] Coifman, R.R., Wickerhauser, M.V., Entropy-based algorithms for best basis selection. IEEE Trans Inf Theory 38:2 (1992), 713–718.
-
(1992)
IEEE Trans Inf Theory
, vol.38
, Issue.2
, pp. 713-718
-
-
Coifman, R.R.1
Wickerhauser, M.V.2
-
29
-
-
0242639026
-
Application of harmonic analysis of NDVI time series (HANTS)
-
S. Azzali M. Menenti DLO Winand Staring Centre Wageningen, The Netherlands Report 108
-
[29] Verhoef, W., Application of harmonic analysis of NDVI time series (HANTS). Azzali, S., Menenti, M., (eds.) Fourier analysis of temporal NDVI in the Southern African and American continents, 1996, DLO Winand Staring Centre, Wageningen, The Netherlands, 19–24 Report 108.
-
(1996)
Fourier analysis of temporal NDVI in the Southern African and American continents
, pp. 19-24
-
-
Verhoef, W.1
-
30
-
-
0034032510
-
Reconstructing Cloudfree NDVI composites using Fourier analysis of time series
-
[30] Roerink, G.J., Menenti, M., Verhoef, W., Reconstructing Cloudfree NDVI composites using Fourier analysis of time series. Int J Rem Sens Print 21:9 (2000), 1911–1917.
-
(2000)
Int J Rem Sens Print
, vol.21
, Issue.9
, pp. 1911-1917
-
-
Roerink, G.J.1
Menenti, M.2
Verhoef, W.3
-
31
-
-
84989886909
-
-
Persistence forecasting: today equals tomorrow. [Retrieved on -02 16].
-
[31] University of Illinois at Urtanu-Chiimpaign. Persistence forecasting: today equals tomorrow. [Retrieved on 2007-02 16].
-
(2007)
-
-
-
32
-
-
84989965716
-
-
[Online]. Available: <>.
-
[32] [Online]. Available: < https://mapsbeta.nrel.gov/wind-prospector/>.
-
-
-
-
33
-
-
0023453329
-
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
-
[33] Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20 (1987), 53–65.
-
(1987)
J Comput Appl Math
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
34
-
-
0019707668
-
On the validation of models
-
[34] Willmott, C., On the validation of models. Phys Geogr 2 (1981), 183–194.
-
(1981)
Phys Geogr
, vol.2
, pp. 183-194
-
-
Willmott, C.1
-
35
-
-
51349159105
-
A protocol for standardizing the performance evaluation of short-term wind power prediction models
-
[35] Madsen, H., Pinson, P., Kariniotakis, G., Nielsen, H.A., Nielsen, T., Pinson, P., A protocol for standardizing the performance evaluation of short-term wind power prediction models. Proceedings of the global wind power conference and exhibition, Chicago (US), 2004, 28–31.
-
(2004)
Proceedings of the global wind power conference and exhibition, Chicago (US)
, pp. 28-31
-
-
Madsen, H.1
Pinson, P.2
Kariniotakis, G.3
Nielsen, H.A.4
Nielsen, T.5
Pinson, P.6
-
36
-
-
33645031359
-
Standardizing the performance evaluation of short-term wind power prediction models
-
[36] Madsen, H., Pinson, P., Kariniotakis, G., Nielsen, H.A., Nielsen, T., Standardizing the performance evaluation of short-term wind power prediction models. Wind Eng 29:6 (2005), 475–489.
-
(2005)
Wind Eng
, vol.29
, Issue.6
, pp. 475-489
-
-
Madsen, H.1
Pinson, P.2
Kariniotakis, G.3
Nielsen, H.A.4
Nielsen, T.5
-
37
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
[37] Han, L., Romero, E.C., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, E.C.2
Yao, Z.3
|