메뉴 건너뛰기




Volumn 167, Issue , 2016, Pages 135-153

A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting

Author keywords

Combined model; Forecasting accuracy; Short term load forecasting; Weight coefficient optimization

Indexed keywords

ALGORITHMS; ELECTRIC POWER PLANT LOADS; ELECTRIC POWER SYSTEM ECONOMICS; ELECTRIC POWER SYSTEM PLANNING; FORECASTING; INTERFERENCE SUPPRESSION; OPTIMIZATION;

EID: 84957805665     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.01.050     Document Type: Article
Times cited : (139)

References (59)
  • 1
    • 84898917562 scopus 로고    scopus 로고
    • Improving photovoltaics grid integration through short time forecasting and self-consumption
    • Masa-Bote D., Castillo-Cagigal M., Matallanas E., et al. Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl Energy 2014, 125(15):103-113.
    • (2014) Appl Energy , vol.125 , Issue.15 , pp. 103-113
    • Masa-Bote, D.1    Castillo-Cagigal, M.2    Matallanas, E.3
  • 2
    • 84861688089 scopus 로고    scopus 로고
    • Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
    • Javed F., Arshad N., Wallin F., Vassileva I., Vassileva E. Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting. Appl Energy 2012, 96:150-160.
    • (2012) Appl Energy , vol.96 , pp. 150-160
    • Javed, F.1    Arshad, N.2    Wallin, F.3    Vassileva, I.4    Vassileva, E.5
  • 3
    • 0035425552 scopus 로고    scopus 로고
    • Short-term hourly load forecasting using time-series modeling with peak load estimation capability
    • Amjady N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. Power Syst IEEE Trans 2001, 16:498-505.
    • (2001) Power Syst IEEE Trans , vol.16 , pp. 498-505
    • Amjady, N.1
  • 4
    • 84905670743 scopus 로고    scopus 로고
    • A hybrid model based on data preprocessing for electrical power forecasting
    • Xiao L., Wang J., Yang X., Xiao L. A hybrid model based on data preprocessing for electrical power forecasting. Electr Power Energy Syst 2015, 64:311-327.
    • (2015) Electr Power Energy Syst , vol.64 , pp. 311-327
    • Xiao, L.1    Wang, J.2    Yang, X.3    Xiao, L.4
  • 5
    • 77954834179 scopus 로고    scopus 로고
    • On the influence of weather forecast errors in short-term load forecasting models
    • Fay D., Ringwood J.V. On the influence of weather forecast errors in short-term load forecasting models. IEEE Trans Power Syst 2010, 25(3):1751-1758.
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.3 , pp. 1751-1758
    • Fay, D.1    Ringwood, J.V.2
  • 6
    • 84896951924 scopus 로고    scopus 로고
    • Hybrid of ARIMA and SVMs for short-term load forecasting
    • Nie H., Liu G., Liu X., Wang Y. Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Proc 2012, 16:1455-1460.
    • (2012) Energy Proc , vol.16 , pp. 1455-1460
    • Nie, H.1    Liu, G.2    Liu, X.3    Wang, Y.4
  • 7
    • 79959829242 scopus 로고    scopus 로고
    • A seasonal hybrid procedure for electricity demand forecasting in China
    • Zhu S., Wang J., Zhao W., Wang J. A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 2011, 88:3807-3815.
    • (2011) Appl Energy , vol.88 , pp. 3807-3815
    • Zhu, S.1    Wang, J.2    Zhao, W.3    Wang, J.4
  • 8
    • 84865411090 scopus 로고    scopus 로고
    • Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting
    • Wang J.Z., Jia R.L., Zhao W.G., Wu J., Dong Y. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting. Chaos Solitons Fract 2012, 45(9-10):1277-1287.
    • (2012) Chaos Solitons Fract , vol.45 , Issue.9-10 , pp. 1277-1287
    • Wang, J.Z.1    Jia, R.L.2    Zhao, W.G.3    Wu, J.4    Dong, Y.5
  • 9
    • 6344242309 scopus 로고    scopus 로고
    • Research on processing of short-term historical data of daily load based on Kalman filter
    • Zhang M., Bao H., Yan L., Cao J., Du J. Research on processing of short-term historical data of daily load based on Kalman filter. Power Syst Technol 2003, 10:9.
    • (2003) Power Syst Technol , vol.10 , pp. 9
    • Zhang, M.1    Bao, H.2    Yan, L.3    Cao, J.4    Du, J.5
  • 10
    • 51849144263 scopus 로고    scopus 로고
    • Short term load forecasting using multiple linear regression
    • In: 42nd International universities power engineering conference UPEC 2007. IEEE; 2007
    • Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear regression. In: 42nd International universities power engineering conference, 2007. UPEC 2007. IEEE; 2007. p. 1192-8.
    • (2007) , pp. 1192-1198
    • Amral, N.1    Ozveren, C.S.2    King, D.3
  • 11
    • 77949920672 scopus 로고    scopus 로고
    • Based on time sequence of ARIMA model in the application of short-term electricity load forecasting
    • ICRCCS'09. IEEE; 2009.
    • Wei L, Zhen-gang Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: International conference on research challenges in computer science, 2009. ICRCCS'09. IEEE; 2009. p. 11-4.
    • (2009) International conference on research challenges in computer science , pp. 11-14
    • Wei, L.1    Zhen-gang, Z.2
  • 12
    • 0015022169 scopus 로고
    • Short-term load forecasting using general exponential smoothing
    • Christiaanse W.R. Short-term load forecasting using general exponential smoothing. IEEE Trans Power Ap Syst 1971, 900-911.
    • (1971) IEEE Trans Power Ap Syst , pp. 900-911
    • Christiaanse, W.R.1
  • 14
    • 84870066611 scopus 로고    scopus 로고
    • A new hybrid day-ahead peak load forecasting method for Iran's National Grid
    • Moazzami M., Khodabakhshian A., Hooshmand R. A new hybrid day-ahead peak load forecasting method for Iran's National Grid. Appl Energy 2013, 101:489-501.
    • (2013) Appl Energy , vol.101 , pp. 489-501
    • Moazzami, M.1    Khodabakhshian, A.2    Hooshmand, R.3
  • 15
    • 77954032128 scopus 로고    scopus 로고
    • An enhanced radial basis function network for short-term electricity price forecasting
    • Lin W.M., Gow H.J., Tsai M.T. An enhanced radial basis function network for short-term electricity price forecasting. Appl Energy 2010, 87(10):3226-3234.
    • (2010) Appl Energy , vol.87 , Issue.10 , pp. 3226-3234
    • Lin, W.M.1    Gow, H.J.2    Tsai, M.T.3
  • 16
    • 84862777006 scopus 로고    scopus 로고
    • An annual load forecasting model based on support vector regression with differential evolution algorithm
    • Wang J., Li L., Niu D., Tan Z. An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 2012, 94:65-70.
    • (2012) Appl Energy , vol.94 , pp. 65-70
    • Wang, J.1    Li, L.2    Niu, D.3    Tan, Z.4
  • 17
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • Jain R.K., Smith K.M., Culligan P.J., Taylor J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl Energy 2014, 123(15):168-178.
    • (2014) Appl Energy , vol.123 , Issue.15 , pp. 168-178
    • Jain, R.K.1    Smith, K.M.2    Culligan, P.J.3    Taylor, J.E.4
  • 18
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • Liu H., Tian H., Pan D., Li Y. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 2013, 107:191-208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 20
    • 0017996045 scopus 로고
    • Forecasting peak system load using a combined time series and econometric model
    • Uri N.D. Forecasting peak system load using a combined time series and econometric model. Appl Energy 1978, 4(3):219-227.
    • (1978) Appl Energy , vol.4 , Issue.3 , pp. 219-227
    • Uri, N.D.1
  • 21
    • 0037409059 scopus 로고    scopus 로고
    • Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
    • Metaxiotis K., Kagiannas A., Askounis D., Psarras J. Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy Convers Manage 2003, 44:1525-1534.
    • (2003) Energy Convers Manage , vol.44 , pp. 1525-1534
    • Metaxiotis, K.1    Kagiannas, A.2    Askounis, D.3    Psarras, J.4
  • 22
    • 84876358609 scopus 로고    scopus 로고
    • A new cascade NN based method to short-term load forecast in deregulated electricity market
    • Kouhi S., Keynia F. A new cascade NN based method to short-term load forecast in deregulated electricity market. Energy Convers Manage 2013, 71:76-83.
    • (2013) Energy Convers Manage , vol.71 , pp. 76-83
    • Kouhi, S.1    Keynia, F.2
  • 23
    • 84871719871 scopus 로고    scopus 로고
    • Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network
    • Zhang X., Yan W. Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network. Energy Proc 2011, 13:6006-6016.
    • (2011) Energy Proc , vol.13 , pp. 6006-6016
    • Zhang, X.1    Yan, W.2
  • 26
    • 44649176454 scopus 로고    scopus 로고
    • Multilayer neuro-fuzzy network for short-term electric load forecasting
    • Bodyanskiy Y., Popov S., Rybalchenko T. Multilayer neuro-fuzzy network for short-term electric load forecasting. Lect Notes Comput Sci 2008, 5010:339-348.
    • (2008) Lect Notes Comput Sci , vol.5010 , pp. 339-348
    • Bodyanskiy, Y.1    Popov, S.2    Rybalchenko, T.3
  • 27
    • 81155159719 scopus 로고    scopus 로고
    • A computational intelligence for prediction of daily peak load
    • Nagi J., Yap K.S., Nagi F., Tiong S.K., Ahmed S.K. A computational intelligence for prediction of daily peak load. Appl Soft Comput 2011, 11:4773-4788.
    • (2011) Appl Soft Comput , vol.11 , pp. 4773-4788
    • Nagi, J.1    Yap, K.S.2    Nagi, F.3    Tiong, S.K.4    Ahmed, S.K.5
  • 28
    • 0024001840 scopus 로고
    • An expert system based algorithm for short term load forecasting
    • Rahman S., Bhatangar R. An expert system based algorithm for short term load forecasting. IEEE Trans Power Syst 1988, 3:392-399.
    • (1988) IEEE Trans Power Syst , vol.3 , pp. 392-399
    • Rahman, S.1    Bhatangar, R.2
  • 29
    • 79551521470 scopus 로고    scopus 로고
    • An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherica l ARTMAP network) neural network
    • Cai Y., Wang J.Z., Tang Y., Yang Y.C. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherica l ARTMAP network) neural network. Energy 2011, 36:1340-1350.
    • (2011) Energy , vol.36 , pp. 1340-1350
    • Cai, Y.1    Wang, J.Z.2    Tang, Y.3    Yang, Y.C.4
  • 30
    • 33750125872 scopus 로고    scopus 로고
    • Combining rainfall-runoff model outputs for improving ensemble streamflow prediction
    • Kim Y.O., Jeong D., Ko I.H. Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. J Hydrologic Eng 2006, 11(6):578-588.
    • (2006) J Hydrologic Eng , vol.11 , Issue.6 , pp. 578-588
    • Kim, Y.O.1    Jeong, D.2    Ko, I.H.3
  • 31
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
    • Wang J.Z., Zhu W.J., Zhang W.Y., Sun D.H. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 2009, 37(11):4901-4909.
    • (2009) Energy Policy , vol.37 , Issue.11 , pp. 4901-4909
    • Wang, J.Z.1    Zhu, W.J.2    Zhang, W.Y.3    Sun, D.H.4
  • 32
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • Feng Yu., Xiaozhong Xu. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 2014, 134:102-113.
    • (2014) Appl Energy , vol.134 , pp. 102-113
    • Feng, Y.1    Xiaozhong, X.2
  • 33
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates J.M., Granger C.W.J. The combination of forecasts. Oper Res Q 1969, 20:451-468.
    • (1969) Oper Res Q , vol.20 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 34
    • 0347692510 scopus 로고    scopus 로고
    • Edward Elgar, [Reprinted in], T.C. Mills (Ed.)
    • Economic forecasting 1999, Edward Elgar, [Reprinted in]. T.C. Mills (Ed.).
    • (1999) Economic forecasting
  • 35
    • 84984423763 scopus 로고
    • Structural change and the combination of forecasts
    • Diebold F.X., Pauly P. Structural change and the combination of forecasts. J Forecast 1987, 6:21-40.
    • (1987) J Forecast , vol.6 , pp. 21-40
    • Diebold, F.X.1    Pauly, P.2
  • 36
    • 33846487369 scopus 로고    scopus 로고
    • Selection of estimation window in the presence of breaks
    • Pesaran M., Timmermann A. Selection of estimation window in the presence of breaks. J Econ 2007, 137:134-161.
    • (2007) J Econ , vol.137 , pp. 134-161
    • Pesaran, M.1    Timmermann, A.2
  • 37
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electr Power Syst Res 2005, 74(3):417-425.
    • (2005) Electr Power Syst Res , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 38
    • 4344580323 scopus 로고    scopus 로고
    • Effect of temperature on short term load forecasting using an integrated ANN
    • Satish B., Swarup K.S., Srinivas S., Rao A.Hanumantha Effect of temperature on short term load forecasting using an integrated ANN. Electr Power Syst Res 2004, 72(1):95-101.
    • (2004) Electr Power Syst Res , vol.72 , Issue.1 , pp. 95-101
    • Satish, B.1    Swarup, K.S.2    Srinivas, S.3    Rao, A.H.4
  • 39
    • 84901800377 scopus 로고    scopus 로고
    • A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
    • Liu N., Tang Q.F., Zhang J.H., Fan W., Liu J. A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl Energy 2014, 129:336-345.
    • (2014) Appl Energy , vol.129 , pp. 336-345
    • Liu, N.1    Tang, Q.F.2    Zhang, J.H.3    Fan, W.4    Liu, J.5
  • 40
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particle swarm optimization
    • Wang J.Z., Zhu S.L., Zhang W.Y., Lu H.Y. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 2010, 35:1671-1678.
    • (2010) Energy , vol.35 , pp. 1671-1678
    • Wang, J.Z.1    Zhu, S.L.2    Zhang, W.Y.3    Lu, H.Y.4
  • 41
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • Xiao L.Y., Wang J.Z., Hou R., Wu J. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 2015, 82:524-549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.Y.1    Wang, J.Z.2    Hou, R.3    Wu, J.4
  • 42
    • 84922796172 scopus 로고    scopus 로고
    • Combined forecasting models for wind energy forecasting: a case study in China
    • Xiao L., Wang J., Dong Y., Wu J. Combined forecasting models for wind energy forecasting: a case study in China. Renew Sust Energy Rev 2015, 44:271-288.
    • (2015) Renew Sust Energy Rev , vol.44 , pp. 271-288
    • Xiao, L.1    Wang, J.2    Dong, Y.3    Wu, J.4
  • 45
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization
    • Yang X.S. Firefly algorithm, stochastic test functions and design optimization. Int J Bio-Inspir Comput 2010, 2:78-84.
    • (2010) Int J Bio-Inspir Comput , vol.2 , pp. 78-84
    • Yang, X.S.1
  • 46
    • 84855993522 scopus 로고    scopus 로고
    • Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect
    • Yang X.S., Hosseini S.S.S., Gandomi A.H. Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 2012, 12:1180-1186.
    • (2012) Appl Soft Comput , vol.12 , pp. 1180-1186
    • Yang, X.S.1    Hosseini, S.S.S.2    Gandomi, A.H.3
  • 47
    • 84877785216 scopus 로고    scopus 로고
    • Automatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithm
    • Saikia L.C., Sahu S.K. Automatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithm. Int J Electr Power Energy Syst 2013, 53:27-33.
    • (2013) Int J Electr Power Energy Syst , vol.53 , pp. 27-33
    • Saikia, L.C.1    Sahu, S.K.2
  • 48
    • 84883194783 scopus 로고    scopus 로고
    • Binary real coded firefly algorithm for solving unit commitment problem
    • Chandrasekaran K., Simon S.P., Padhy N.P. Binary real coded firefly algorithm for solving unit commitment problem. Inf Sci 2013, 249:67-84.
    • (2013) Inf Sci , vol.249 , pp. 67-84
    • Chandrasekaran, K.1    Simon, S.P.2    Padhy, N.P.3
  • 49
    • 80053988026 scopus 로고    scopus 로고
    • Clustering using firefly algorithm: performance study
    • Senthilnath J., Omkar S.N., Mani V. Clustering using firefly algorithm: performance study. Swarm Evol Comput 2011, 1:164-171.
    • (2011) Swarm Evol Comput , vol.1 , pp. 164-171
    • Senthilnath, J.1    Omkar, S.N.2    Mani, V.3
  • 51
    • 84875502179 scopus 로고    scopus 로고
    • Optimum design of structures using an improved firefly algorithm
    • Kazemzadeh A. Optimum design of structures using an improved firefly algorithm. Int J Optim Civil Eng 2011, 2(1):327-340.
    • (2011) Int J Optim Civil Eng , vol.2 , Issue.1 , pp. 327-340
    • Kazemzadeh, A.1
  • 52
    • 84890245567 scopus 로고    scopus 로고
    • Nonlinear programming: theory and algorithms
    • John Wiley and Sons, New York
    • Bazaraa M.S., Sherali H.D., Shetty L.M. Nonlinear programming: theory and algorithms 2006, John Wiley and Sons, New York.
    • (2006)
    • Bazaraa, M.S.1    Sherali, H.D.2    Shetty, L.M.3
  • 53
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization, Stochastic algorithms: foundations and applications. SAGA 2009
    • Yang X.S. Firefly algorithms for multimodal optimization, Stochastic algorithms: foundations and applications. SAGA 2009. Lect Notes Comput Sci 2009, 5792:169-178.
    • (2009) Lect Notes Comput Sci , vol.5792 , pp. 169-178
    • Yang, X.S.1
  • 54
    • 84891819648 scopus 로고    scopus 로고
    • An improved firefly algorithm for solving dynamic multidimensional knapsack problems
    • Adil B., Fehmi B.O. An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst Appl 2014, 41:3712-3725.
    • (2014) Expert Syst Appl , vol.41 , pp. 3712-3725
    • Adil, B.1    Fehmi, B.O.2
  • 55
    • 84928053539 scopus 로고    scopus 로고
    • Correlation and instance based feature selection for electricity load forecasting
    • Irena K., Mashud R., Vassilios G.A. Correlation and instance based feature selection for electricity load forecasting. Knowl-Based Syst 2015, 82:29-40.
    • (2015) Knowl-Based Syst , vol.82 , pp. 29-40
    • Irena, K.1    Mashud, R.2    Vassilios, G.A.3
  • 56
    • 0031891445 scopus 로고    scopus 로고
    • A sequential learning approach for single hidden layer neural networks
    • Zhang J., Morri J.A. A sequential learning approach for single hidden layer neural networks. Neural Networks 1998, 11(1):65-80.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 65-80
    • Zhang, J.1    Morri, J.A.2
  • 57
    • 85021192926 scopus 로고    scopus 로고
    • Nonlinear multivariate calibration using principal component
    • Gemperline PJ, Long JR, Gregoriou VG. Nonlinear multivariate calibration using principal component.
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, V.G.3
  • 58
    • 85021245929 scopus 로고    scopus 로고
    • http://www.sgcc.com.cn/dwxx/qydwyxqk/zgfhyjfhl/290684.shtml.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.