-
1
-
-
84989787723
-
-
Australian Energy Market Operator.
-
[1] Australian Energy Market Operator, 2015.
-
(2015)
-
-
-
2
-
-
0036275409
-
Electric load forecasting: literature survey and classification of methods
-
[2] Alfares, H.K., Nazeeruddin, M., Electric load forecasting: literature survey and classification of methods. Int. J. Syst. Sci. 33:1 (2002), 23–34.
-
(2002)
Int. J. Syst. Sci.
, vol.33
, Issue.1
, pp. 23-34
-
-
Alfares, H.K.1
Nazeeruddin, M.2
-
3
-
-
84894439375
-
Fast decorrelated neural network ensembles with random weights
-
[3] Alhamdoosh, M., Wang, D., Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264 (2014), 104–117.
-
(2014)
Inf. Sci.
, vol.264
, pp. 104-117
-
-
Alhamdoosh, M.1
Wang, D.2
-
4
-
-
0035478854
-
Random forests
-
[4] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0030242096
-
A rapid supervised learning neural network for function interpolation and approximation
-
[5] Chen, C.L.P., A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans. Neural Netw. 7:5 (1996), 1220–1230.
-
(1996)
IEEE Trans. Neural Netw.
, vol.7
, Issue.5
, pp. 1220-1230
-
-
Chen, C.L.P.1
-
6
-
-
0033078284
-
A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction
-
[6] Chen, C.L.P., Wan, J.Z., A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 29:1 (1999), 62–72.
-
(1999)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.29
, Issue.1
, pp. 62-72
-
-
Chen, C.L.P.1
Wan, J.Z.2
-
7
-
-
84871652939
-
Random forest based ensemble system for short term load forecasting
-
[7] Cheng, Y.-Y., Chan, P., Qiu, Z.-W., Random forest based ensemble system for short term load forecasting. Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC2012), vol. 1, 2012, 52–56, 10.1109/ICMLC.2012.6358885.
-
(2012)
Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC2012)
, vol.1
, pp. 52-56
-
-
Cheng, Y.-Y.1
Chan, P.2
Qiu, Z.-W.3
-
9
-
-
79960527815
-
Short-term load forecasting with neural network ensembles: a comparative study [application notes]
-
[9] De Felice, M., Yao, X., Short-term load forecasting with neural network ensembles: a comparative study [application notes]. IEEE Comput. Intell. Mag. 6:3 (2011), 47–56.
-
(2011)
IEEE Comput. Intell. Mag.
, vol.6
, Issue.3
, pp. 47-56
-
-
De Felice, M.1
Yao, X.2
-
10
-
-
84899013173
-
Support vector regression machines
-
[10] Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V., Support vector regression machines. Adv. Neural Inf. Process. Syst. 9 (1997), 155–161.
-
(1997)
Adv. Neural Inf. Process. Syst.
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
11
-
-
84921328083
-
Short-term load forecasting using random forests
-
D. Filev J. Jabłkowski J. Kacprzyk M. Krawczak I. Popchev L. Rutkowski V. Sgurev E. Sotirova P. Szynkarczyk S. Zadrozny Springer International Publishing
-
[11] Dudek, G., Short-term load forecasting using random forests. Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S., (eds.) Intelligent Systems’2014 Advances in Intelligent Systems and Computing, vol. 323, 2015, Springer International Publishing, 821–828, 10.1007/978-3-319-11310-4_71.
-
(2015)
Intelligent Systems’2014, Advances in Intelligent Systems and Computing
, vol.323
, pp. 821-828
-
-
Dudek, G.1
-
12
-
-
77953719971
-
Electric load forecasting based on locally weighted support vector regression
-
[12] Elattar, E.E., Goulermas, J., Wu, Q.H., Electric load forecasting based on locally weighted support vector regression. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 40 (2010), 438–447.
-
(2010)
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
, vol.40
, pp. 438-447
-
-
Elattar, E.E.1
Goulermas, J.2
Wu, Q.H.3
-
13
-
-
84873577903
-
Artificial intelligence based hybrid structures for short-term load forecasting without temperature data
-
[13] Esener, I., Yuksel, T., Kurban, M., Artificial intelligence based hybrid structures for short-term load forecasting without temperature data. Proceedings of the International Conference on Machine Learning and Applications (ICMLA2012), FL, US, vol. 2, 2012, 457–462.
-
(2012)
Proceedings of the International Conference on Machine Learning and Applications (ICMLA2012), FL, US
, vol.2
, pp. 457-462
-
-
Esener, I.1
Yuksel, T.2
Kurban, M.3
-
14
-
-
84877355447
-
Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting
-
[14] Fan, G.F., Qing, S., Wang, H., Hong, W.C., Li, H.J., Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 6 (2013), 1887–1901.
-
(2013)
Energies
, vol.6
, pp. 1887-1901
-
-
Fan, G.F.1
Qing, S.2
Wang, H.3
Hong, W.C.4
Li, H.J.5
-
15
-
-
77949579415
-
Time series prediction using dynamic ridge polynomial neural networks
-
[15] Ghazali, R., Hussain, A., Al-Jumeily, D., Lisboa, P., Time series prediction using dynamic ridge polynomial neural networks. Proceedings of the International Conference on Developments in eSystems Engineering (DESE2009), 2009, 354–363.
-
(2009)
Proceedings of the International Conference on Developments in eSystems Engineering (DESE2009)
, pp. 354-363
-
-
Ghazali, R.1
Hussain, A.2
Al-Jumeily, D.3
Lisboa, P.4
-
16
-
-
84875050717
-
Energy load forecasting using empirical mode decomposition and support vector regression
-
[16] Ghelardoni, L., Ghio, A., Anguita, D., Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid 4:1 (2013), 549–556.
-
(2013)
IEEE Trans. Smart Grid
, vol.4
, Issue.1
, pp. 549-556
-
-
Ghelardoni, L.1
Ghio, A.2
Anguita, D.3
-
17
-
-
84872956786
-
Very short-term load forecasting: wavelet neural networks with data pre-filtering
-
[17] Guan, C., Luh, P.B., Michel, L.D., Wang, Y., Friedland, P.B., Very short-term load forecasting: wavelet neural networks with data pre-filtering. IEEE Trans. Power Syst. 28:1 (2013), 30–31.
-
(2013)
IEEE Trans. Power Syst.
, vol.28
, Issue.1
, pp. 30-31
-
-
Guan, C.1
Luh, P.B.2
Michel, L.D.3
Wang, Y.4
Friedland, P.B.5
-
18
-
-
33947250367
-
Support vector machine model in electricity load forecasting
-
[18] Guo, Y.-C., xiao Niu, D., Chen, Y.-X., Support vector machine model in electricity load forecasting. Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC2006), 2006, 2892–2896, 10.1109/ICMLC.2006.259076.
-
(2006)
Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC2006)
, pp. 2892-2896
-
-
Guo, Y.-C.1
xiao Niu, D.2
Chen, Y.-X.3
-
19
-
-
0035248045
-
Neural networks for short-term load forecasting: a review and evaluation
-
[19] Hippert, H.S., Pedreira, C.E., Souza, R.C., Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16 (2001), 44–55.
-
(2001)
IEEE Trans. Power Syst.
, vol.16
, pp. 44-55
-
-
Hippert, H.S.1
Pedreira, C.E.2
Souza, R.C.3
-
20
-
-
84867745784
-
A hybrid intelligent algorithm based short-term load forecasting approach
-
[20] Hooshmand, R.-A., Amooshahi, H., Parastegari, M., A hybrid intelligent algorithm based short-term load forecasting approach. Int. J. Electr. Power Energy Syst. 45 (2013), 313–324.
-
(2013)
Int. J. Electr. Power Energy Syst.
, vol.45
, pp. 313-324
-
-
Hooshmand, R.-A.1
Amooshahi, H.2
Parastegari, M.3
-
21
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
[21] Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2:5 (1989), 359–366.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
22
-
-
84899800725
-
A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
-
[22] Kavousi-Fard, A., Samet, H., Marzbani, F., A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 41 (2014), 6047–6056.
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 6047-6056
-
-
Kavousi-Fard, A.1
Samet, H.2
Marzbani, F.3
-
23
-
-
84871720465
-
Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter
-
[23] Ko, C.-N., Lee, C.-M., Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 49 (2013), 413–422.
-
(2013)
Energy
, vol.49
, pp. 413-422
-
-
Ko, C.-N.1
Lee, C.-M.2
-
24
-
-
84938118602
-
Day-ahead load forecast using random forest and expert input selection
-
[24] Lahouar, A., Slama, J.B.H., Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103 (2015), 1040–1051, 10.1016/j.enconman.2015.07.041.
-
(2015)
Energy Convers. Manage.
, vol.103
, pp. 1040-1051
-
-
Lahouar, A.1
Slama, J.B.H.2
-
25
-
-
84870066611
-
A new hybrid day-ahead peak load forecasting method for Iran's national grid
-
[25] Moazzami, M., Khodabakhshian, A., Hooshmand, R., A new hybrid day-ahead peak load forecasting method for Iran's national grid. Appl. Energy 101 (2013), 489–501.
-
(2013)
Appl. Energy
, vol.101
, pp. 489-501
-
-
Moazzami, M.1
Khodabakhshian, A.2
Hooshmand, R.3
-
27
-
-
0028420218
-
Learning and generalization characteristics of the random vector functional-link net
-
[27] Pao, Y.-H., Park, G.-H., Sobajic, D.J., Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6:2 (1994), 163–180.
-
(1994)
Neurocomputing
, vol.6
, Issue.2
, pp. 163-180
-
-
Pao, Y.-H.1
Park, G.-H.2
Sobajic, D.J.3
-
29
-
-
84989777636
-
-
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
-
[29] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
-
(2015)
-
-
-
30
-
-
84919905288
-
A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
-
[30] Ren, Y., Suganthan, P.N., Srikanth, N., A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustainable Energy 6:1 (2015), 236–244.
-
(2015)
IEEE Trans. Sustainable Energy
, vol.6
, Issue.1
, pp. 236-244
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
-
31
-
-
85051374302
-
Feedforward neural networks with random weights
-
[31] Schmidt, W.F., Kraaijveld, M.A., Duin, R.P., Feedforward neural networks with random weights. Proceedings of the IAPR International Conference on Pattern Recognition Conference B: Pattern Recognition Methodology and Systems, 1992, 1–4.
-
(1992)
Proceedings of the IAPR International Conference on Pattern Recognition Conference B: Pattern Recognition Methodology and Systems
, pp. 1-4
-
-
Schmidt, W.F.1
Kraaijveld, M.A.2
Duin, R.P.3
-
32
-
-
84856296455
-
Short-term load forecasting with exponentially weighted methods
-
[32] Taylor, J.W., Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 27:1 (2012), 458–464.
-
(2012)
IEEE Trans. Power Syst.
, vol.27
, Issue.1
, pp. 458-464
-
-
Taylor, J.W.1
-
33
-
-
36348992080
-
Short-term load forecasting methods: an evaluation based on European data
-
[33] Taylor, J.W., McSharry, P.E., Short-term load forecasting methods: an evaluation based on European data. IEEE Trans. Power Syst. 22:4 (2007), 2213–2219.
-
(2007)
IEEE Trans. Power Syst.
, vol.22
, Issue.4
, pp. 2213-2219
-
-
Taylor, J.W.1
McSharry, P.E.2
-
35
-
-
84883778687
-
Neural networks and wavelet de-noising for stock trading and prediction
-
W. Pedrycz S.M. Chen Springer
-
[35] Wang, L.P., Gupta, S., Neural networks and wavelet de-noising for stock trading and prediction. Pedrycz, W., Chen, S.M., (eds.) Time Series Analysis, Modeling and Applications, 2013, Springer, 229–247.
-
(2013)
Time Series Analysis, Modeling and Applications
, pp. 229-247
-
-
Wang, L.P.1
Gupta, S.2
-
36
-
-
0034878556
-
Predicting time series with wavelet packet neural networks
-
[36] Wang, L.P., Teo, K., Lin, Z., Predicting time series with wavelet packet neural networks. Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN2001), 2001, 1593–1597.
-
(2001)
Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN2001)
, pp. 1593-1597
-
-
Wang, L.P.1
Teo, K.2
Lin, Z.3
-
37
-
-
84951823694
-
A comprehensive evaluation of random vector functional link networks
-
[37] Zhang, L., Suganthan, P.N., A comprehensive evaluation of random vector functional link networks. Inf. Sci., 2015, 10.1016/j.ins.2015.09.025.
-
(2015)
Inf. Sci.
-
-
Zhang, L.1
Suganthan, P.N.2
|