메뉴 건너뛰기




Volumn 367-368, Issue , 2016, Pages 1078-1093

Random vector functional link network for short-term electricity load demand forecasting

Author keywords

Electricity load demand forecasting; Neural network; Random vector functional link; Random weights; Time series forecasting

Indexed keywords

ELECTRIC LOAD FORECASTING; FORECASTING; IMPULSE RESPONSE; NETWORK LAYERS; NEURAL NETWORKS; TIME DELAY; TIME SERIES; TIME VARYING NETWORKS;

EID: 84955577214     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.11.039     Document Type: Article
Times cited : (247)

References (37)
  • 1
    • 84989787723 scopus 로고    scopus 로고
    • Australian Energy Market Operator.
    • [1] Australian Energy Market Operator, 2015.
    • (2015)
  • 2
    • 0036275409 scopus 로고    scopus 로고
    • Electric load forecasting: literature survey and classification of methods
    • [2] Alfares, H.K., Nazeeruddin, M., Electric load forecasting: literature survey and classification of methods. Int. J. Syst. Sci. 33:1 (2002), 23–34.
    • (2002) Int. J. Syst. Sci. , vol.33 , Issue.1 , pp. 23-34
    • Alfares, H.K.1    Nazeeruddin, M.2
  • 3
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • [3] Alhamdoosh, M., Wang, D., Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264 (2014), 104–117.
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [4] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0030242096 scopus 로고    scopus 로고
    • A rapid supervised learning neural network for function interpolation and approximation
    • [5] Chen, C.L.P., A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans. Neural Netw. 7:5 (1996), 1220–1230.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.5 , pp. 1220-1230
    • Chen, C.L.P.1
  • 6
    • 0033078284 scopus 로고    scopus 로고
    • A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction
    • [6] Chen, C.L.P., Wan, J.Z., A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 29:1 (1999), 62–72.
    • (1999) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.29 , Issue.1 , pp. 62-72
    • Chen, C.L.P.1    Wan, J.Z.2
  • 9
    • 79960527815 scopus 로고    scopus 로고
    • Short-term load forecasting with neural network ensembles: a comparative study [application notes]
    • [9] De Felice, M., Yao, X., Short-term load forecasting with neural network ensembles: a comparative study [application notes]. IEEE Comput. Intell. Mag. 6:3 (2011), 47–56.
    • (2011) IEEE Comput. Intell. Mag. , vol.6 , Issue.3 , pp. 47-56
    • De Felice, M.1    Yao, X.2
  • 11
    • 84921328083 scopus 로고    scopus 로고
    • Short-term load forecasting using random forests
    • D. Filev J. Jabłkowski J. Kacprzyk M. Krawczak I. Popchev L. Rutkowski V. Sgurev E. Sotirova P. Szynkarczyk S. Zadrozny Springer International Publishing
    • [11] Dudek, G., Short-term load forecasting using random forests. Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S., (eds.) Intelligent Systems’2014 Advances in Intelligent Systems and Computing, vol. 323, 2015, Springer International Publishing, 821–828, 10.1007/978-3-319-11310-4_71.
    • (2015) Intelligent Systems’2014, Advances in Intelligent Systems and Computing , vol.323 , pp. 821-828
    • Dudek, G.1
  • 14
    • 84877355447 scopus 로고    scopus 로고
    • Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting
    • [14] Fan, G.F., Qing, S., Wang, H., Hong, W.C., Li, H.J., Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 6 (2013), 1887–1901.
    • (2013) Energies , vol.6 , pp. 1887-1901
    • Fan, G.F.1    Qing, S.2    Wang, H.3    Hong, W.C.4    Li, H.J.5
  • 16
    • 84875050717 scopus 로고    scopus 로고
    • Energy load forecasting using empirical mode decomposition and support vector regression
    • [16] Ghelardoni, L., Ghio, A., Anguita, D., Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid 4:1 (2013), 549–556.
    • (2013) IEEE Trans. Smart Grid , vol.4 , Issue.1 , pp. 549-556
    • Ghelardoni, L.1    Ghio, A.2    Anguita, D.3
  • 17
    • 84872956786 scopus 로고    scopus 로고
    • Very short-term load forecasting: wavelet neural networks with data pre-filtering
    • [17] Guan, C., Luh, P.B., Michel, L.D., Wang, Y., Friedland, P.B., Very short-term load forecasting: wavelet neural networks with data pre-filtering. IEEE Trans. Power Syst. 28:1 (2013), 30–31.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.1 , pp. 30-31
    • Guan, C.1    Luh, P.B.2    Michel, L.D.3    Wang, Y.4    Friedland, P.B.5
  • 19
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: a review and evaluation
    • [19] Hippert, H.S., Pedreira, C.E., Souza, R.C., Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16 (2001), 44–55.
    • (2001) IEEE Trans. Power Syst. , vol.16 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • [21] Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2:5 (1989), 359–366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 84899800725 scopus 로고    scopus 로고
    • A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • [22] Kavousi-Fard, A., Samet, H., Marzbani, F., A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 41 (2014), 6047–6056.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 6047-6056
    • Kavousi-Fard, A.1    Samet, H.2    Marzbani, F.3
  • 23
    • 84871720465 scopus 로고    scopus 로고
    • Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter
    • [23] Ko, C.-N., Lee, C.-M., Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 49 (2013), 413–422.
    • (2013) Energy , vol.49 , pp. 413-422
    • Ko, C.-N.1    Lee, C.-M.2
  • 24
    • 84938118602 scopus 로고    scopus 로고
    • Day-ahead load forecast using random forest and expert input selection
    • [24] Lahouar, A., Slama, J.B.H., Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103 (2015), 1040–1051, 10.1016/j.enconman.2015.07.041.
    • (2015) Energy Convers. Manage. , vol.103 , pp. 1040-1051
    • Lahouar, A.1    Slama, J.B.H.2
  • 25
    • 84870066611 scopus 로고    scopus 로고
    • A new hybrid day-ahead peak load forecasting method for Iran's national grid
    • [25] Moazzami, M., Khodabakhshian, A., Hooshmand, R., A new hybrid day-ahead peak load forecasting method for Iran's national grid. Appl. Energy 101 (2013), 489–501.
    • (2013) Appl. Energy , vol.101 , pp. 489-501
    • Moazzami, M.1    Khodabakhshian, A.2    Hooshmand, R.3
  • 27
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • [27] Pao, Y.-H., Park, G.-H., Sobajic, D.J., Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6:2 (1994), 163–180.
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 29
    • 84989777636 scopus 로고    scopus 로고
    • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
    • [29] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
    • (2015)
  • 30
    • 84919905288 scopus 로고    scopus 로고
    • A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
    • [30] Ren, Y., Suganthan, P.N., Srikanth, N., A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustainable Energy 6:1 (2015), 236–244.
    • (2015) IEEE Trans. Sustainable Energy , vol.6 , Issue.1 , pp. 236-244
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 32
    • 84856296455 scopus 로고    scopus 로고
    • Short-term load forecasting with exponentially weighted methods
    • [32] Taylor, J.W., Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 27:1 (2012), 458–464.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.1 , pp. 458-464
    • Taylor, J.W.1
  • 33
    • 36348992080 scopus 로고    scopus 로고
    • Short-term load forecasting methods: an evaluation based on European data
    • [33] Taylor, J.W., McSharry, P.E., Short-term load forecasting methods: an evaluation based on European data. IEEE Trans. Power Syst. 22:4 (2007), 2213–2219.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.4 , pp. 2213-2219
    • Taylor, J.W.1    McSharry, P.E.2
  • 35
    • 84883778687 scopus 로고    scopus 로고
    • Neural networks and wavelet de-noising for stock trading and prediction
    • W. Pedrycz S.M. Chen Springer
    • [35] Wang, L.P., Gupta, S., Neural networks and wavelet de-noising for stock trading and prediction. Pedrycz, W., Chen, S.M., (eds.) Time Series Analysis, Modeling and Applications, 2013, Springer, 229–247.
    • (2013) Time Series Analysis, Modeling and Applications , pp. 229-247
    • Wang, L.P.1    Gupta, S.2
  • 37
    • 84951823694 scopus 로고    scopus 로고
    • A comprehensive evaluation of random vector functional link networks
    • [37] Zhang, L., Suganthan, P.N., A comprehensive evaluation of random vector functional link networks. Inf. Sci., 2015, 10.1016/j.ins.2015.09.025.
    • (2015) Inf. Sci.
    • Zhang, L.1    Suganthan, P.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.