메뉴 건너뛰기




Volumn 40, Issue 23-24, 2016, Pages 10631-10649

A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms

Author keywords

Electrical power system; Fast ensemble empirical mode decomposition; Forecasting validity degree; Improved simulated annealing; Modified particle swarm optimization; Time series forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; DATA HANDLING; ELECTRIC POWER SYSTEMS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SIMULATED ANNEALING; STOCHASTIC SYSTEMS; TIME SERIES; WIND;

EID: 84994716124     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2016.08.001     Document Type: Article
Times cited : (67)

References (56)
  • 2
    • 84930630393 scopus 로고    scopus 로고
    • Wind speed forecast correction models using polynomial neural networks
    • [2] Ladislav, Z, Wind speed forecast correction models using polynomial neural networks. Renew. Energy 83 (2015), 998–1006.
    • (2015) Renew. Energy , vol.83 , pp. 998-1006
    • Ladislav, Z.1
  • 3
    • 84946594359 scopus 로고    scopus 로고
    • An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
    • [3] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F., An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 162 (2015), 808–826.
    • (2015) Appl. Energy , vol.162 , pp. 808-826
    • Zhao, J.1    Guo, Z.H.2    Su, Z.Y.3    Zhao, Z.Y.4    Xiao, X.5    Liu, F.6
  • 4
    • 84928053539 scopus 로고    scopus 로고
    • Correlation and instance based feature selection for electricity load forecasting
    • [4] Koprinska, I., Rana, M., Agelidis, V.G., Correlation and instance based feature selection for electricity load forecasting. Knowl. Based Syst. 82 (2015), 29–40.
    • (2015) Knowl. Based Syst. , vol.82 , pp. 29-40
    • Koprinska, I.1    Rana, M.2    Agelidis, V.G.3
  • 5
    • 84926486574 scopus 로고    scopus 로고
    • Distributed HS-ARTMAP and its forecasting model for electricity load
    • [5] Lu, X., Wang, J.Z., Cai, Y., Zhao, J., Distributed HS-ARTMAP and its forecasting model for electricity load. Appl. Soft Comput. 32 (2015), 13–22.
    • (2015) Appl. Soft Comput. , vol.32 , pp. 13-22
    • Lu, X.1    Wang, J.Z.2    Cai, Y.3    Zhao, J.4
  • 6
    • 84934952783 scopus 로고    scopus 로고
    • Forecasting day-ahead electricity prices: Utilizing hourly prices
    • [6] Raviv, E., Bouwman, K.E., Dijk, D.V., Forecasting day-ahead electricity prices: Utilizing hourly prices. Energy Econ. 50 (2015), 227–239.
    • (2015) Energy Econ. , vol.50 , pp. 227-239
    • Raviv, E.1    Bouwman, K.E.2    Dijk, D.V.3
  • 7
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • [7] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F., Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 157 (2015), 183–194.
    • (2015) Appl. Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.Q.2    Liang, X.F.3    Li, Y.F.4
  • 8
    • 84904970436 scopus 로고    scopus 로고
    • Seasonal and trend time series forecasting based on a quasi-linear autoregressive model
    • [8] Gan, M., Cheng, Y., Liu, K., Zhang, G.L., Seasonal and trend time series forecasting based on a quasi-linear autoregressive model. Appl. Soft Comput. 24 (2014), 13–18.
    • (2014) Appl. Soft Comput. , vol.24 , pp. 13-18
    • Gan, M.1    Cheng, Y.2    Liu, K.3    Zhang, G.L.4
  • 9
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • [9] Raza, M.Q., Khosravi, A., A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50 (2015), 1352–1372.
    • (2015) Renew. Sustain. Energy Rev. , vol.50 , pp. 1352-1372
    • Raza, M.Q.1    Khosravi, A.2
  • 10
    • 84875686419 scopus 로고    scopus 로고
    • Applying ARMA–GARCH approaches to forecasting short-term electricity prices
    • [10] Liu, H.P., Shi, J., Applying ARMA–GARCH approaches to forecasting short-term electricity prices. Energy Econ. 37 (2013), 152–166.
    • (2013) Energy Econ. , vol.37 , pp. 152-166
    • Liu, H.P.1    Shi, J.2
  • 11
    • 84937800670 scopus 로고    scopus 로고
    • Modeling and forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence
    • [11] Bentes, S., Modeling and forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence. Phys. A Stat. Mech. Appl. 438 (2015), 355–364.
    • (2015) Phys. A Stat. Mech. Appl. , vol.438 , pp. 355-364
    • Bentes, S.1
  • 12
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting through hybrid KF–ANN model based on ARIMA
    • [12] Shukur, O.B., Lee, M.H., Daily wind speed forecasting through hybrid KF–ANN model based on ARIMA. Renew. Energy 76 (2015), 637–647.
    • (2015) Renew. Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 13
    • 84997706201 scopus 로고    scopus 로고
    • Artificial neural networks applications in wind energy systems: A review
    • [13] Ata, R., Artificial neural networks applications in wind energy systems: A review. Renew. Sustain. Energy Rev. 49 (2015), 534–562.
    • (2015) Renew. Sustain. Energy Rev. , vol.49 , pp. 534-562
    • Ata, R.1
  • 14
    • 84961736541 scopus 로고    scopus 로고
    • Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
    • [14] Lasheras, F.S., Juez, F.J., Sanchez, A.S., Kremien, A., Fernandez, P.R., Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resour. Policy 45 (2015), 37–43.
    • (2015) Resour. Policy , vol.45 , pp. 37-43
    • Lasheras, F.S.1    Juez, F.J.2    Sanchez, A.S.3    Kremien, A.4    Fernandez, P.R.5
  • 15
    • 84928138452 scopus 로고    scopus 로고
    • A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting
    • [15] Lou, C.W., Dong, M.C., A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. Electr. Power Energy Syst. 73 (2015), 34–44.
    • (2015) Electr. Power Energy Syst. , vol.73 , pp. 34-44
    • Lou, C.W.1    Dong, M.C.2
  • 16
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
    • [16] Ren, C., An, N., Wang, J.Z., Li, L., Hu, B., Shang, D., Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl. Based Syst. 56 (2014), 226–239.
    • (2014) Knowl. Based Syst. , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.Z.3    Li, L.4    Hu, B.5    Shang, D.6
  • 17
    • 84887788957 scopus 로고    scopus 로고
    • Forecasting wind power in the Mai Liao wind farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
    • [17] Yeh, W.C., Yeh, Y.M., Chang, P.C., Ke, Y.C., Chung, V., Forecasting wind power in the Mai Liao wind farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Electr. Power Energy Syst. 55 (2014), 741–748.
    • (2014) Electr. Power Energy Syst. , vol.55 , pp. 741-748
    • Yeh, W.C.1    Yeh, Y.M.2    Chang, P.C.3    Ke, Y.C.4    Chung, V.5
  • 19
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
    • [19] Juang, C.F., A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34 (2004), 997–1006.
    • (2004) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.34 , pp. 997-1006
    • Juang, C.F.1
  • 20
    • 79951850744 scopus 로고    scopus 로고
    • A vector forecasting model for fuzzy time series
    • [20] Li, S.T., Kuo, S.C., Cheng, Y.C., Chen, C.C., A vector forecasting model for fuzzy time series. Appl. Soft Comput. 11 (2011), 3125–3134.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3125-3134
    • Li, S.T.1    Kuo, S.C.2    Cheng, Y.C.3    Chen, C.C.4
  • 21
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • [21] Osorio, G.J., Matias, J.C., Catalao, J.P., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75 (2015), 301–307.
    • (2015) Renew. Energy , vol.75 , pp. 301-307
    • Osorio, G.J.1    Matias, J.C.2    Catalao, J.P.3
  • 22
    • 77957666748 scopus 로고    scopus 로고
    • Swarm-based translation-invariant morphological prediction method for financial time series forecasting
    • [22] Araujo, R.A., Swarm-based translation-invariant morphological prediction method for financial time series forecasting. Inf. Sci. 180 (2010), 4784–4805.
    • (2010) Inf. Sci. , vol.180 , pp. 4784-4805
    • Araujo, R.A.1
  • 23
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted Boltzmann machines
    • [23] Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M., Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137 (2014), 47–56.
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3    Obayashi, M.4
  • 24
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • [24] Liu, H., Tian, H.Q., Pan, D.F., Li, Y.F., Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl. Energy 107 (2013), 191–208.
    • (2013) Appl. Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.Q.2    Pan, D.F.3    Li, Y.F.4
  • 25
    • 78650968145 scopus 로고    scopus 로고
    • Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study
    • [25] Velazquez, S., Carta, J.A., Matias, J.M., Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study. Renew. Sustain. Energy Rev. 15 (2011), 1556–1566.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 1556-1566
    • Velazquez, S.1    Carta, J.A.2    Matias, J.M.3
  • 26
    • 77957088306 scopus 로고    scopus 로고
    • Review of the use of numerical weather prediction (NWP) models for wind energy assessment
    • [26] Yahyai, S.A., Charabi, Y., Gastli, A., Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renew. Sustain. Energy Rev. 14 (2010), 3192–3198.
    • (2010) Renew. Sustain. Energy Rev. , vol.14 , pp. 3192-3198
    • Yahyai, S.A.1    Charabi, Y.2    Gastli, A.3
  • 27
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction and recognition of ictal EEG using EMD and SVM
    • [27] Li, S.F., Zhou, W.D., Yuan, Q., Geng, S.J., Cai, D.M., Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 43 (2013), 807–816.
    • (2013) Comput. Biol. Med. , vol.43 , pp. 807-816
    • Li, S.F.1    Zhou, W.D.2    Yuan, Q.3    Geng, S.J.4    Cai, D.M.5
  • 28
    • 84863722612 scopus 로고    scopus 로고
    • Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains
    • [28] Kabir, M.A., Shahnaz, C., Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 7 (2012), 481–489.
    • (2012) Biomed. Signal Process. Control , vol.7 , pp. 481-489
    • Kabir, M.A.1    Shahnaz, C.2
  • 29
    • 0000256978 scopus 로고
    • Fuzzy aggregation of modular neural networks with ordered weighted averaging operators
    • [29] Yager, R.R., Fuzzy aggregation of modular neural networks with ordered weighted averaging operators. Int. J. Approx. Reason. 13 (1995), 359–375.
    • (1995) Int. J. Approx. Reason. , vol.13 , pp. 359-375
    • Yager, R.R.1
  • 30
    • 84878854403 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied to wind speed time series
    • [30] Hu, J.M., Wang, J.Z., Zeng, G.W., A hybrid forecasting approach applied to wind speed time series. Renew. Energy 60 (2013), 185–194.
    • (2013) Renew. Energy , vol.60 , pp. 185-194
    • Hu, J.M.1    Wang, J.Z.2    Zeng, G.W.3
  • 31
    • 84893194518 scopus 로고    scopus 로고
    • On the computational complexity of the empirical mode decomposition algorithm
    • [31] Wang, Y.H., Yeh, C.H., Young, H.W.V., Hu, K., Lo., M.T., On the computational complexity of the empirical mode decomposition algorithm. Phys. A Stat. Mech. Appl. 400 (2014), 159–167.
    • (2014) Phys. A Stat. Mech. Appl. , vol.400 , pp. 159-167
    • Wang, Y.H.1    Yeh, C.H.2    Young, H.W.V.3    Hu, K.4    Lo., M.T.5
  • 32
    • 84924867201 scopus 로고    scopus 로고
    • Forecasting solar radiation using an optimized hybrid model by cuckoo search algorithm
    • [32] Wang, J.Z., Jiang, H., Wu, Y.J., Dong, Y., Forecasting solar radiation using an optimized hybrid model by cuckoo search algorithm. Energy 81 (2015), 627–644.
    • (2015) Energy , vol.81 , pp. 627-644
    • Wang, J.Z.1    Jiang, H.2    Wu, Y.J.3    Dong, Y.4
  • 33
    • 84994700194 scopus 로고    scopus 로고
    • Wick sintered temperature forecasting based on support vector machines with simulated annealing
    • [33] Zeng, D.H., Liu, Y., Jiang, L.B., Li, L., Xu, G., Wick sintered temperature forecasting based on support vector machines with simulated annealing. Phys. Proc. 25 (2012), 427–434.
    • (2012) Phys. Proc. , vol.25 , pp. 427-434
    • Zeng, D.H.1    Liu, Y.2    Jiang, L.B.3    Li, L.4    Xu, G.5
  • 34
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • [34] Hong, W.C., Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74 (2011), 2096–2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 35
    • 84971207147 scopus 로고    scopus 로고
    • An improved simulated annealing algorithm in fracture network modelling
    • [35] Mahmoodpour, S., Masihi, M., An improved simulated annealing algorithm in fracture network modelling. J. Nat. Gas Sci. Eng. 33 (2016), 538–550.
    • (2016) J. Nat. Gas Sci. Eng. , vol.33 , pp. 538-550
    • Mahmoodpour, S.1    Masihi, M.2
  • 36
    • 84879571959 scopus 로고    scopus 로고
    • Performance analyzing and researching of improved PSO algorithm
    • [36] Lei, X.J., He, A.L., Sun, J.J., Performance analyzing and researching of improved PSO algorithm. Appl. Res. Comput. 27 (2010), 453–458.
    • (2010) Appl. Res. Comput. , vol.27 , pp. 453-458
    • Lei, X.J.1    He, A.L.2    Sun, J.J.3
  • 37
    • 85020693480 scopus 로고    scopus 로고
    • Simulated annealing algorithm: A valid global optimization algorithm
    • [37] Wang, L.Z., Zhou, Y.J., Simulated annealing algorithm: A valid global optimization algorithm. J. Liuzhou Teach. Coll. 20 (2005), 120–123.
    • (2005) J. Liuzhou Teach. Coll. , vol.20 , pp. 120-123
    • Wang, L.Z.1    Zhou, Y.J.2
  • 38
    • 84904181323 scopus 로고    scopus 로고
    • Short-term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm
    • [38] Bahrami, S., Hooshmand, R.A., Parastegari, M., Short-term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm. Energy 72 (2014), 434–442.
    • (2014) Energy , vol.72 , pp. 434-442
    • Bahrami, S.1    Hooshmand, R.A.2    Parastegari, M.3
  • 39
    • 84960901998 scopus 로고    scopus 로고
    • Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)
    • [39] Delgarm, N., Sajadi, B., Kowsary, F., Delgarm, S., Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 170 (2016), 293–303.
    • (2016) Appl. Energy , vol.170 , pp. 293-303
    • Delgarm, N.1    Sajadi, B.2    Kowsary, F.3    Delgarm, S.4
  • 40
    • 56649102087 scopus 로고    scopus 로고
    • Optimal tuning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization
    • [40] El-Zonkoly, A.M., Khalil, A.A., Ahmied, N.M, Optimal tuning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization. Expert Syst. Appl. 36 (2009), 2097–2106.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2097-2106
    • El-Zonkoly, A.M.1    Khalil, A.A.2    Ahmied, N.M.3
  • 41
    • 84921385514 scopus 로고    scopus 로고
    • A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm
    • [41] Khanna, V., Das, B.K., Bisht, D., Vandana, Singh, P.K., A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy 78 (2015), 105–113.
    • (2015) Renew. Energy , vol.78 , pp. 105-113
    • Khanna, V.1    Das, B.K.2    Bisht, D.3    Vandana4    Singh, P.K.5
  • 42
    • 84994785722 scopus 로고    scopus 로고
    • Constriction factor particle swarm optimization algorithm with overcoming local optimum
    • [42] Ji, X.L., Li, M., Li, W., Constriction factor particle swarm optimization algorithm with overcoming local optimum. Comput. Eng. 37 (2014), 213–215.
    • (2014) Comput. Eng. , vol.37 , pp. 213-215
    • Ji, X.L.1    Li, M.2    Li, W.3
  • 43
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
    • [43] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F., New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 83 (2015), 1066–1075.
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.Q.2    Liang, X.F.3    Li, Y.F.4
  • 44
    • 84994722505 scopus 로고    scopus 로고
    • A rolling grey model optimized by particle swarm optimization in economic prediction
    • [44] Liu, L., Wang, Q.R., Wang, J.Z., Liu, M., A rolling grey model optimized by particle swarm optimization in economic prediction. Comput. Intell., 2014.
    • (2014) Comput. Intell.
    • Liu, L.1    Wang, Q.R.2    Wang, J.Z.3    Liu, M.4
  • 46
    • 0038047679 scopus 로고    scopus 로고
    • Induced aggregation operators
    • [46] Yager, R.R., Induced aggregation operators. Fuzzy Sets Syst. 137 (2003), 59–69.
    • (2003) Fuzzy Sets Syst. , vol.137 , pp. 59-69
    • Yager, R.R.1
  • 47
    • 84983770437 scopus 로고    scopus 로고
    • The exploration of the normal form of the index of forecasting validity
    • [47] Wang, M.T., The exploration of the normal form of the index of forecasting validity. Forecasting 17 (1998), 39–40.
    • (1998) Forecasting , vol.17 , pp. 39-40
    • Wang, M.T.1
  • 48
    • 84881084251 scopus 로고    scopus 로고
    • A novel self-adaptation hybrid artificial fish-swarm algorithm
    • [48] Hu, X.T., Zhang, H.Q., Li, Z.C., Huang, Y.A., Yin, Z.P., A novel self-adaptation hybrid artificial fish-swarm algorithm. IFAC Proc. 46 (2013), 583–588.
    • (2013) IFAC Proc. , vol.46 , pp. 583-588
    • Hu, X.T.1    Zhang, H.Q.2    Li, Z.C.3    Huang, Y.A.4    Yin, Z.P.5
  • 49
    • 84964678002 scopus 로고    scopus 로고
    • Maiden application of cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy system
    • [49] Sanajaoba, S., Fernandez, E., Maiden application of cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy system. Renew. Energy 96 (2016), 1–10.
    • (2016) Renew. Energy , vol.96 , pp. 1-10
    • Sanajaoba, S.1    Fernandez, E.2
  • 50
    • 84940590334 scopus 로고    scopus 로고
    • Modelling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms – Support vector regression forecast
    • [50] Sermpinis, G., Stasinakis, C., Teofilatos, K., Karathanasopoulos, A., Modelling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms – Support vector regression forecast. Eur. J. Oper. Res. 247 (2015), 831–846.
    • (2015) Eur. J. Oper. Res. , vol.247 , pp. 831-846
    • Sermpinis, G.1    Stasinakis, C.2    Teofilatos, K.3    Karathanasopoulos, A.4
  • 51
    • 84952837840 scopus 로고    scopus 로고
    • A hybrid algorithm of ant colony optimization (ACO) and iterated local search (ILS) for estimating electricity domestic consumption: Case of Turkey
    • [51] Toksari, M.D., A hybrid algorithm of ant colony optimization (ACO) and iterated local search (ILS) for estimating electricity domestic consumption: Case of Turkey. Int. J. Electr. Power Energy Syst. 78 (2016), 776–782.
    • (2016) Int. J. Electr. Power Energy Syst. , vol.78 , pp. 776-782
    • Toksari, M.D.1
  • 52
    • 84947195900 scopus 로고    scopus 로고
    • Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network
    • [52] Melo, H., Watada, J., Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network. Neurocomputing 172 (2016), 405–412.
    • (2016) Neurocomputing , vol.172 , pp. 405-412
    • Melo, H.1    Watada, J.2
  • 53
    • 84958998908 scopus 로고    scopus 로고
    • Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1,1) model
    • [53] Yuan, C.Q., Liu, S.F., Fang, Z.G., Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1,1) model. Energy 100 (2016), 384–390.
    • (2016) Energy , vol.100 , pp. 384-390
    • Yuan, C.Q.1    Liu, S.F.2    Fang, Z.G.3
  • 54
    • 84921517596 scopus 로고    scopus 로고
    • Research and application of a new hybrid forecasting model based on genetic algorithm optimization: A case study of Shandong wind farm in China
    • [54] Jiang, P, Li, X, Dong, Y, Research and application of a new hybrid forecasting model based on genetic algorithm optimization: A case study of Shandong wind farm in China. Math. Probl. Eng. 2015 (2015), 1–14.
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 1-14
    • Jiang, P.1    Li, X.2    Dong, Y.3
  • 55
    • 84964425002 scopus 로고    scopus 로고
    • An optimized grey model for annual power load forecasting
    • [55] Zhao, H.R., Guo, S., An optimized grey model for annual power load forecasting. Energy 107 (2016), 272–286.
    • (2016) Energy , vol.107 , pp. 272-286
    • Zhao, H.R.1    Guo, S.2
  • 56
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • [56] Wang, J.J., Zhang, W.Y., Li, Y.N., Wang, J.Z., Dang, Z.L., Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 23 (2014), 452–459.
    • (2014) Appl. Soft Comput. , vol.23 , pp. 452-459
    • Wang, J.J.1    Zhang, W.Y.2    Li, Y.N.3    Wang, J.Z.4    Dang, Z.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.