메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1875-1908

On relevant dimensions in kernel feature spaces

Author keywords

Dimension reduction; Effective dimensionality; Feature space; Kernel methods

Indexed keywords

CLASSIFICATION (OF INFORMATION); SUPERVISED LEARNING;

EID: 50949127418     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (121)

References (27)
  • 1
    • 33847676413 scopus 로고    scopus 로고
    • Statistical properties of kernel principal component analysis
    • Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel principal component analysis. Machine Learning, 66(2-3):259-294, 2007.
    • (2007) Machine Learning , vol.66 , Issue.2-3 , pp. 259-294
    • Blanchard, G.1    Bousquet, O.2    Zwald, L.3
  • 2
    • 33750713303 scopus 로고    scopus 로고
    • Accurate error bounds for the eigenvalues of the kernel matrix
    • Nov
    • Mikio L. Braun. Accurate error bounds for the eigenvalues of the kernel matrix. Journal of Machine Learning Research, 7:2303-2328, Nov 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2303-2328
    • Braun, M.L.1
  • 3
    • 50949119288 scopus 로고    scopus 로고
    • Mikio L. Braun. Spectral Properties of the Kernel Matrix and Their Application to Kernel Methods in Machine Learning. PhD thesis, University of Bonn, 2005. Available electronically at http://hss.ulb.uni-bonn.de/diss_online/ math_nat_fak/2005/braun_mikio.
    • Mikio L. Braun. Spectral Properties of the Kernel Matrix and Their Application to Kernel Methods in Machine Learning. PhD thesis, University of Bonn, 2005. Available electronically at http://hss.ulb.uni-bonn.de/diss_online/ math_nat_fak/2005/braun_mikio.
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Chris J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0014751986 scopus 로고
    • The rotation of eigenvectors by a perturbation, iii
    • Chandler Davis and William M. Kahan. The rotation of eigenvectors by a perturbation, iii. SIAM Journal of Numerical Analysis, 7:1-46, 1970.
    • (1970) SIAM Journal of Numerical Analysis , vol.7 , pp. 1-46
    • Davis, C.1    Kahan, W.M.2
  • 7
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 160(620-630), 1957.
    • (1957) Physical Review , vol.160 , Issue.620-630
    • Jaynes, E.T.1
  • 8
    • 4344709031 scopus 로고    scopus 로고
    • Random matrix approximation of spectra of integral operators
    • Vladimir Koltchinskii and Evariste Giné. Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113-167, 2000.
    • (2000) Bernoulli , vol.6 , Issue.1 , pp. 113-167
    • Koltchinskii, V.1    Giné, E.2
  • 9
    • 9444244014 scopus 로고    scopus 로고
    • Asymptotics of spectral projections of some random matrices approximating integral operators
    • Vladimir I. Koltchinskii. Asymptotics of spectral projections of some random matrices approximating integral operators. Progress in Probability, 43:191-227, 1998.
    • (1998) Progress in Probability , vol.43 , pp. 191-227
    • Koltchinskii, V.I.1
  • 10
    • 1542337814 scopus 로고    scopus 로고
    • PhD thesis, Technische Universität Berlin, December
    • Sebastian Mika. Kernel Fisher Discriminants. PhD thesis, Technische Universität Berlin, December 2002.
    • (2002) Kernel Fisher Discriminants
    • Mika, S.1
  • 12
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • March
    • Gunnar Rätsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, March 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 14
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 18
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11(4):637-649, 1998.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.-R.3
  • 22
    • 50949109824 scopus 로고    scopus 로고
    • Régis Vert, Laurent Zwald, Gilles Blanchard, and Pascal Massart. Kernel projection machine: a new tool for pattern recognition. In Advances in Neural Information Processing Systems (NIPS 2004), pages 1649-1656. 2005, 2005.
    • Régis Vert, Laurent Zwald, Gilles Blanchard, and Pascal Massart. Kernel projection machine: a new tool for pattern recognition. In Advances in Neural Information Processing Systems (NIPS 2004), pages 1649-1656. 2005, 2005.
  • 25
    • 0035441827 scopus 로고    scopus 로고
    • Generalization bounds for regularization networks and support vector machines via entropy numbers of compact operators
    • Robert C. Williamson, Alex J. Smola, and Bernhard Schölkopf. Generalization bounds for regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transaction on Information Theory, 47(6):2516-2532, 2001.
    • (2001) IEEE Transaction on Information Theory , vol.47 , Issue.6 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Schölkopf, B.3
  • 26
    • 22944490838 scopus 로고    scopus 로고
    • Learning bounds for kernel regression using effective data dimensionality
    • Tong Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17:2077-2098, 2005.
    • (2005) Neural Computation , vol.17 , pp. 2077-2098
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.