-
1
-
-
84940560152
-
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
-
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. 2015. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE, 10(7):e0130140.
-
(2015)
PLoS ONE
, vol.10
, Issue.7
, pp. e0130140
-
-
Bach, S.1
Binder, A.2
Montavon, G.3
Klauschen, F.4
Müller, K.-R.5
Samek, W.6
-
2
-
-
0142166851
-
A Neural Probabilistic Language Model
-
Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. 2003. A Neural Probabilistic Language Model. JMLR, 3:1137-1155.
-
(2003)
JMLR
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
3
-
-
80053558787
-
Natural Language Processing (Almost) from Scratch
-
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. 2011. Natural Language Processing (Almost) from Scratch. JMLR, 12:2493-2537.
-
(2011)
JMLR
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
5
-
-
0002206019
-
Use of some sensitivity criteria for choosing networks with good generalization ability
-
Y. Dimopoulos, P. Bourret, and S. Lek. 1995. Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters, 2(6):1-4.
-
(1995)
Neural Processing Letters
, vol.2
, Issue.6
, pp. 1-4
-
-
Dimopoulos, Y.1
Bourret, P.2
Lek, S.3
-
7
-
-
0037442845
-
Review and comparison of methods to study the contribution of variables in artificial neural network models
-
M. Gevrey, I. Dimopoulos, and S. Lek. 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3):249-264.
-
(2003)
Ecological Modelling
, vol.160
, Issue.3
, pp. 249-264
-
-
Gevrey, M.1
Dimopoulos, I.2
Lek, S.3
-
8
-
-
84961376850
-
Convolutional Neural Networks for Sentence Classification
-
Y. Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proc. of EMNLP, pages 1746-1751.
-
(2014)
Proc. of EMNLP
, pp. 1746-1751
-
-
Kim, Y.1
-
9
-
-
0032708870
-
Extracting decision trees from trained neural networks
-
R. Krishnan, G. Sivakumar, and P. Bhattacharya. 1999. Extracting decision trees from trained neural networks. Pattern Recognition, 32(12):1999-2009.
-
(1999)
Pattern Recognition
, vol.32
, Issue.12
, pp. 1999-2009
-
-
Krishnan, R.1
Sivakumar, G.2
Bhattacharya, P.3
-
10
-
-
84885678081
-
Interpreting Individual Classifications of Hierarchical Networks
-
W. Landecker, M. Thomure, L. Bettencourt, M. Mitchell, G. Kenyon, and S. Brumby. 2013. Interpreting Individual Classifications of Hierarchical Networks. In IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pages 32-38.
-
(2013)
IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
, pp. 32-38
-
-
Landecker, W.1
Thomure, M.2
Bettencourt, L.3
Mitchell, M.4
Kenyon, G.5
Brumby, S.6
-
12
-
-
85072607163
-
The Layer-wise Relevance Propagation Toolbox for Artificial Neural Networks
-
in press
-
S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, and W. Samek. 2016b. The Layer-wise Relevance Propagation Toolbox for Artificial Neural Networks. JMLR. in press.
-
(2016)
JMLR
-
-
Lapuschkin, S.1
Binder, A.2
Montavon, G.3
Müller, K.-R.4
Samek, W.5
-
15
-
-
84959138050
-
-
arXiv, (1512.02479)
-
G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R. Müller. 2015. Explaining NonLinear Classification Decisions with Deep Taylor Decomposition. arXiv, (1512.02479).
-
(2015)
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
-
-
Montavon, G.1
Bach, S.2
Binder, A.3
Samek, W.4
Müller, K.-R.5
-
17
-
-
84959147131
-
-
arXiv, (1509.06321)
-
W. Samek, A. Binder, G. Montavon, S. Bach, and K.-R. Müller. 2015. Evaluating the visualization of what a Deep Neural Network has learned. arXiv, (1509.06321).
-
(2015)
Evaluating the visualization of what a Deep Neural Network has learned
-
-
Samek, W.1
Binder, A.2
Montavon, G.3
Bach, S.4
Müller, K.-R.5
-
18
-
-
85083953896
-
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
-
K. Simonyan, A. Vedaldi, and A. Zisserman. 2014. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. In Workshop Proc. ICLR.
-
(2014)
Workshop Proc. ICLR.
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
19
-
-
84906489074
-
Visualizing and Understanding Convolutional Networks
-
M. D. Zeiler and R. Fergus. 2014. Visualizing and Understanding Convolutional Networks. In ECCV, pages 818-833.
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M. D.1
Fergus, R.2
|